
变量选择之SCAD算法
本文提出了一种用于同时达到选择变量和预测模型系数的目的的方法——SCAD。这种方法的罚函数是对称且非凹的,并且可处理奇异阵以产生稀疏解。此外,本文提出了一种算法用于优化对应的带惩罚项的似然函数。这种方法具有广泛的适用性,可以应用于广义线性模型,强健的回归模型。借助于波和样条,还可用于非参数模型。更进一步地,本文证明该方法具有Oracle性质。模拟的结果显示该方法相比主流的变量选择模型具有优势。并且,模型的预测误差公式显示,该方法实用性较强。
SCAD的理论理解
在总结了现有模型的一些缺点之后,本文提出构造罚函数的一些目标:
罚函数是奇异的(singular)
连续地压缩系数
对较大的系数产生无偏的估计
SCAD模型的Oracle性质,使得它的预测效果跟真实模型别无二致。
并且,这种方法可以应用于高维非参数建模。
SCAD的目标函数如下:
SCAD的罚函数与$theta$的(近似)关系如下图所示。
可见,罚函数可以用二阶泰勒展开逼近。
Hard Penality,lasso,SCAD的系数压缩情况VS系数真实值的情况如下图所示。
可以看到,lasso压缩系数是始终有偏的,Hard penality是无偏的,但压缩系数不连续。而SCAD既能连续的压缩系数,也能在较大的系数取得渐近无偏的估计。
这使得SCAD具有Oracle性质。
SCAD的缺点
模型形式过于复杂
迭代算法运行速度较慢
在low noise level的情况下表现较优,但在high noise level的情况下表现较差。
SCAD的实现
SCAD迭代公式
SCAD的目标函数如下:
时,罚函数可以用二阶泰勒展开逼近。
从而,有如下迭代公式:
根据以上公式,代入迭代步骤,即可实现算法。
SCAD的R实现
##------数据模拟--------
library(MASS)
##mvrnorm()
##定义一个产生多元正态分布的随机向量协方差矩阵
Simu_Multi_Norm<-function(x_len, sd = 1, pho = 0.5){
#初始化协方差矩阵
V <- matrix(data = NA, nrow = x_len, ncol = x_len)
#mean及sd分别为随机向量x的均值和方差
#对协方差矩阵进行赋值pho(i,j) = pho^|i-j|
for(i in 1:x_len){ ##遍历每一行
for(j in 1:x_len){ ##遍历每一列
V[i,j] <- pho^abs(i-j)
}
}
V<-(sd^2) * V
return(V)
}
##产生模拟数值自变量X
set.seed(123)
X<-mvrnorm(n = 200, mu = rep(0,10), Simu_Multi_Norm(x_len = 10,sd = 1, pho = 0.5))
##产生模拟数值:响应变量y
beta<-c(1,2,0,0,3,0,0,0,-2,0)
#alpha<-0
#prob<-exp(alpha + X %*% beta)/(1+exp(alpha + X %*% beta))
prob<-exp( X %*% beta)/(1+exp( X %*% beta))
y<-rbinom(n = 200, size = 1,p = prob)
##产生model matrix
mydata<-data.frame(X = X, y = y)
#X<-model.matrix(y~., data = mydata)
##包含截矩项的系数
#b_real<-c(alpha,beta)
b_real<-beta
########----定义惩罚项相关的函数-----------------
##定义惩罚项
####运行发现,若lambda设置为2,则系数全被压缩为0.
####本程序根据rcvreg用CV选出来的lambda设置一个较为合理的lambda。
p_lambda<-function(theta,lambda = 0.025){
p_lambda<-sapply(theta, function(x){
if(abs(x)< lambda){
return(lambda^2 - (abs(x) - lambda)^2)
}else{
return(lambda^2)
}
}
)
return(p_lambda)
}
##定义惩罚项导数
p_lambda_d<-function(theta,a = 3.7,lambda = 0.025){
if(abs(theta) > lambda){
if(a * lambda > theta){
return((a * lambda - theta)/(a - 1))
}else{
return(0)
}
}else{
return(lambda)
}
}
# ##当beta_j0不等于0,定义惩罚项导数近似
# p_lambda_d_apro<-function(beta_j0,beta_j,a = 3.7, lambda = 2){
# return(beta_j * p_lambda_d(beta = beta_j0,a = a, lambda = lambda)/abs(beta_j0))
# }
#
#
# ##当beta_j0 不等于0,指定近似惩罚项,使用泰勒展开逼近
# p_lambda_apro<-function(beta_j0,beta_j,a = 3.7, lambda = 2){
# if(abs(beta_j0)< 1e-16){
# return(0)
# }else{
# p_lambda<-p_lambda(theta = beta_j0, lambda = lambda) +
# 0.5 * (beta_j^2 - beta_j0^2) * p_lambda_d(theta = beta_j0, a = a, lambda = lambda)/abs(beta_j0)
# }
# }
#define the log-likelihood function
loglikelihood_SCAD<-function(X, y, b){
linear_comb<-as.vector(X %*% b)
ll<-sum(y*linear_comb) + sum(log(1/(1+exp(linear_comb)))) - nrow(X)*sum(p_lambda(theta = b))
return (ll)
}
##初始化系数
#b0<-rep(0,length(b_real))
#b0<- b_real+rnorm(length(b_real), mean = 0, sd = 0.1)
##将无惩罚时的优化结果作为初始值
b.best_GS<-b.best
b0<-b.best_GS
##b1用于记录更新系数
b1<-b0
##b.best用于存放历史最大似然值对应系数
b.best_SCAD<-b0
# the initial value of loglikelihood
ll.old<-loglikelihood_SCAD(X = X,y = y, b = b0)
# initialize the difference between the two steps of theta
diff<-1
#record the number of iterations
iter<-0
#set the threshold to stop iterations
epsi<-1e-10
#the maximum iterations
max_iter<-100000
#初始化一个列表用于存放每一次迭代的系数结果
b_history<-list(data.frame(b0))
#初始化列表用于存放似然值
ll_list<-list(ll.old)
#######-------SCAD迭代---------
while(diff > epsi & iter < max_iter){
for(j in 1:length(b_real)){
if(abs(b0[j]) < 1e-06){
next()
}else{
#线性部分
linear_comb<-as.vector(X %*% b0)
#分子
nominator<-sum(y*X[,j] - X[,j] * exp(linear_comb)/(1+exp(linear_comb))) +
nrow(X)*b0[j]*p_lambda_d(theta = b0[j])/abs(b0[j])
#分母,即二阶导部分
denominator<- -sum(X[,j]^2 * exp(linear_comb)/(1+exp(linear_comb))^2) +
nrow(X)*p_lambda_d(theta = b0[j])/abs(b0[j])
#2-(3) :更新b0[j]
b0[j]<-b0[j] - nominator/denominator
#2-(4)
if(abs(b0[j]) < 1e-06){
b0[j] <- 0
}
# #更新似然值
# ll.new<- loglikelihood_SCAD(X = X, y = y, b = b0)
#
#
#
# #若似然值有所增加,则将当前系数保存
# if(ll.new > ll.old){
# #更新系数
# b.best_SCAD[j]<-b0[j]
# }
#
# #求差异
# diff<- abs((ll.new - ll.old)/ll.old)
# ll.old <- ll.new
# iter<- iter+1
# b_history[[iter]]<-data.frame(b0)
# ll_list[[iter]]<-ll.old
# ##当达到停止条件时,跳出循环
# if(diff < epsi){
# break
# }
#
}
}
#更新似然值
ll.new<- loglikelihood_SCAD(X = X, y = y, b = b0)
#若似然值有所增加,则将当前系数保存
if(ll.new > ll.old){
#更新系数
b.best_SCAD<-b0
}
#求差异
diff<- abs((ll.new - ll.old)/ll.old)
ll.old <- ll.new
iter<- iter+1
b_history[[iter]]<-data.frame(b0)
ll_list[[iter]]<-ll.old
}
b_hist<-do.call(rbind,b_history)
#b_hist
ll_hist<-do.call(rbind,ll_list)
#ll_hist
#
iter
##
ll.best<-max(ll_hist)
ll.best
##
b.best_SCAD
##对比
cbind(coeff_glm,b.best,b.best_SCAD,b_real)
##----------ncvreg验证-----------
library(ncvreg)
my_ncvreg<-ncvreg(X,y,family = c("binomial"),penalty = c("SCAD"),lambda = 2)
my_ncvreg$beta
my_ncvreg<-ncvreg(X,y,family = c("binomial"),penalty = c("SCAD"))
summary(my_ncvreg)
my_ncvreg$beta
###用cv找最优的lambda
scad_cv<-cv.ncvreg(X,y,family = c("binomial"),penalty='SCAD')
scad_cv$lambda.min
mySCAD=ncvreg(X,y,family = c("binomial"),penalty='SCAD',lambda=scad_cv$lambda.min)
summary(mySCAD)
ncv_SCAD<-mySCAD$beta[-1]
##对比
myFinalResults<-cbind(无惩罚项回归=coeff_glm, GS迭代 = b.best,
GS_SCAD迭代 = b.best_SCAD, ncvreg = ncv_SCAD,真实值 = b_real)
save(myFinalResults,file = "myFinalResults.rda")
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13