京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析技术:条件Logistic回归模型;配伍组设计的实验数据如何利用SPSS进行条件逻辑回归分析
在医学等研究目的极度细化,但是研究对象(人)异常复杂的领域,实验设计是需要异常谨慎小心的。前面专门写过一篇文章介绍常用的实验设计方法:
数据分析技术:常用实验设计方法介绍;选择合理的实验设计方法是科学研究成功的基础
通过不同实验设计方案获得的数据,其数据分析方法也有很大的区别。今天我们要介绍的是配伍设计获得的实验数据,如何利用SPSS进行条件Logistic回归模型分析。
条件逻辑回归模型
实验设计方法文章中介绍了如何通过巧妙的实验设计来控制非实验处理因素,从而使实验结果更加的准确。例如,很多的医学实验会采用病例对照实验,采取1:1或者1:N配比的方法来选择实验对象,即一个病例和一个对照或一个病例和N个对照,使得病例和对照在除了实验因素以外的其它非实验因素尽可能相同,这样的实验设计方法称为配对实验。通过配对试验设计获得的数据如果采用逻辑回归模型分析,应当使用条件(配对)逻辑回归模型。下表是按1:1配对设计收到上来的实验数据:
配对实验设计中,每一个配对组都包括病例组和对照组,采集他们的m项指标数值(m个实验因素),从x1到xm,那么该实验设计的第i配对组的条件逻辑回归模型可以表示为:
可以发现,不同配对组间,m个实验因素对因变量logit(P)的影响效果是相同的,它们对应的回归系数a1,……,am完全相同。不同配对组的回归模型的区别在于常数项bi,也就是截距,反映了非实验因素对因变量的影响程度不同。
配对实验设计将每个配对组分成病例组和对照组,如果将两个组的指标数值相减,那么就可以将非实验因素造成的不同配对组间的截距差异抵消,再将这些相减后的指标数值代入逻辑回归模型。最终得到的条件逻辑回归模型中是没有常数项的,如下式所示:
SPSS没有为条件逻辑回归模型设置专门的菜单选项,而是将该功能整合进入多元逻辑回归的菜单项中。当SPSS发现因变量中只有一个数值时,就会启动条件逻辑回归模型分析(病例组是否患病变量的数字代号是1,对照组的为0,选入对话框的因变量等于病例组减去对照组,所以因变量都为1)。此外,所有的自变量是相减后产生的,所以都要选为协变量,而不是根据原来的数据类型有的选为因子,有的选为协变量。这种条件逻辑回归分析方法只适用于1:1的配对组实验数据处理。
案例分析
某课题组的研究方向是子宫内膜癌发生机制。经过前期的研究基础,他们发现雌激素的摄入量与患子宫内膜癌有关,为了弄清楚该推测是否正确,该课题组对退休妇女进行调查。课题组采用的实验方案是配对实验,为了排除非实验因素的影响,在选择对照组样本时,需要满足以下条件:与病例组(患有子宫内膜癌)患者的年龄相差不超过一岁,婚姻状况相同,居住在同一小区。考察的实验因素(自变量)包括是否服用雌激素、体重、胆囊病史、服用其他非雌激素药物。共收集到63个配对组数据,如下图所示:
分析步骤
1、选择菜单【分析】-【回归】-【多元Logistic】,在跳出的对话框进行如下操作:将是否患病选为因变量,将相减后的体重、是否服用雌激素、是否有胆囊炎病史和是否服用非磁性激素药物选为协变量(自变量)。
2、点击【模型】按钮,因为通过配对实验设计得到的数据,需要用条件逻辑回归模型来分析,而模型不存在常数项,因此需要在模型对话框中,将默认选中的模型截距取消。
3、点击继续,然后点击确定,输出结果。
结果解释
1、警告提示;结果首先会出现一个警告提示:因变量只具有一个有效值,将拟合条件Logistic回归模型,这个和我们前面介绍的内容相同。
2、模型拟合信息;与其它逻辑回归分析一样,分析结果会输出模型的拟合信息,对数似然检验的显著性小于0.05,可以说明拟合的模型中,至少有一个自变量的回归系数不等于0,拟合的模型是有效模型。结果同时输出三个伪R方值,它们的值与前面介绍的模型伪R方值相比是比较高的,达到0.39以上,说明模型效果不错。
3、回归系数的似然比检验结果。该结果展示从当模型中分别剔除每一个自变量后拟合新的条件Logistic回归模型的负-2对数似然值,用于考察是否能够将该自变量从当前模型中剔除。可以看出体重、是否服用非雌激素药物的显著性都大于0.05。提示可以进一步对模型进行优化。
4、回归参数表;
从结果可知,服用雌激素的妇女,她们罹患子宫内膜癌的相对危险系数(OR值)是未服用雌激素妇女的14.851倍。有胆囊病史的妇女,她们患子宫内膜癌的相对危险系数(OR值)是没有胆囊病史妇女的6.270倍。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06