
SPSS分析技术:条件Logistic回归模型;配伍组设计的实验数据如何利用SPSS进行条件逻辑回归分析
在医学等研究目的极度细化,但是研究对象(人)异常复杂的领域,实验设计是需要异常谨慎小心的。前面专门写过一篇文章介绍常用的实验设计方法:
数据分析技术:常用实验设计方法介绍;选择合理的实验设计方法是科学研究成功的基础
通过不同实验设计方案获得的数据,其数据分析方法也有很大的区别。今天我们要介绍的是配伍设计获得的实验数据,如何利用SPSS进行条件Logistic回归模型分析。
条件逻辑回归模型
实验设计方法文章中介绍了如何通过巧妙的实验设计来控制非实验处理因素,从而使实验结果更加的准确。例如,很多的医学实验会采用病例对照实验,采取1:1或者1:N配比的方法来选择实验对象,即一个病例和一个对照或一个病例和N个对照,使得病例和对照在除了实验因素以外的其它非实验因素尽可能相同,这样的实验设计方法称为配对实验。通过配对试验设计获得的数据如果采用逻辑回归模型分析,应当使用条件(配对)逻辑回归模型。下表是按1:1配对设计收到上来的实验数据:
配对实验设计中,每一个配对组都包括病例组和对照组,采集他们的m项指标数值(m个实验因素),从x1到xm,那么该实验设计的第i配对组的条件逻辑回归模型可以表示为:
可以发现,不同配对组间,m个实验因素对因变量logit(P)的影响效果是相同的,它们对应的回归系数a1,……,am完全相同。不同配对组的回归模型的区别在于常数项bi,也就是截距,反映了非实验因素对因变量的影响程度不同。
配对实验设计将每个配对组分成病例组和对照组,如果将两个组的指标数值相减,那么就可以将非实验因素造成的不同配对组间的截距差异抵消,再将这些相减后的指标数值代入逻辑回归模型。最终得到的条件逻辑回归模型中是没有常数项的,如下式所示:
SPSS没有为条件逻辑回归模型设置专门的菜单选项,而是将该功能整合进入多元逻辑回归的菜单项中。当SPSS发现因变量中只有一个数值时,就会启动条件逻辑回归模型分析(病例组是否患病变量的数字代号是1,对照组的为0,选入对话框的因变量等于病例组减去对照组,所以因变量都为1)。此外,所有的自变量是相减后产生的,所以都要选为协变量,而不是根据原来的数据类型有的选为因子,有的选为协变量。这种条件逻辑回归分析方法只适用于1:1的配对组实验数据处理。
案例分析
某课题组的研究方向是子宫内膜癌发生机制。经过前期的研究基础,他们发现雌激素的摄入量与患子宫内膜癌有关,为了弄清楚该推测是否正确,该课题组对退休妇女进行调查。课题组采用的实验方案是配对实验,为了排除非实验因素的影响,在选择对照组样本时,需要满足以下条件:与病例组(患有子宫内膜癌)患者的年龄相差不超过一岁,婚姻状况相同,居住在同一小区。考察的实验因素(自变量)包括是否服用雌激素、体重、胆囊病史、服用其他非雌激素药物。共收集到63个配对组数据,如下图所示:
分析步骤
1、选择菜单【分析】-【回归】-【多元Logistic】,在跳出的对话框进行如下操作:将是否患病选为因变量,将相减后的体重、是否服用雌激素、是否有胆囊炎病史和是否服用非磁性激素药物选为协变量(自变量)。
2、点击【模型】按钮,因为通过配对实验设计得到的数据,需要用条件逻辑回归模型来分析,而模型不存在常数项,因此需要在模型对话框中,将默认选中的模型截距取消。
3、点击继续,然后点击确定,输出结果。
结果解释
1、警告提示;结果首先会出现一个警告提示:因变量只具有一个有效值,将拟合条件Logistic回归模型,这个和我们前面介绍的内容相同。
2、模型拟合信息;与其它逻辑回归分析一样,分析结果会输出模型的拟合信息,对数似然检验的显著性小于0.05,可以说明拟合的模型中,至少有一个自变量的回归系数不等于0,拟合的模型是有效模型。结果同时输出三个伪R方值,它们的值与前面介绍的模型伪R方值相比是比较高的,达到0.39以上,说明模型效果不错。
3、回归系数的似然比检验结果。该结果展示从当模型中分别剔除每一个自变量后拟合新的条件Logistic回归模型的负-2对数似然值,用于考察是否能够将该自变量从当前模型中剔除。可以看出体重、是否服用非雌激素药物的显著性都大于0.05。提示可以进一步对模型进行优化。
4、回归参数表;
从结果可知,服用雌激素的妇女,她们罹患子宫内膜癌的相对危险系数(OR值)是未服用雌激素妇女的14.851倍。有胆囊病史的妇女,她们患子宫内膜癌的相对危险系数(OR值)是没有胆囊病史妇女的6.270倍。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25