京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析技术:条件Logistic回归模型;配伍组设计的实验数据如何利用SPSS进行条件逻辑回归分析
在医学等研究目的极度细化,但是研究对象(人)异常复杂的领域,实验设计是需要异常谨慎小心的。前面专门写过一篇文章介绍常用的实验设计方法:
数据分析技术:常用实验设计方法介绍;选择合理的实验设计方法是科学研究成功的基础
通过不同实验设计方案获得的数据,其数据分析方法也有很大的区别。今天我们要介绍的是配伍设计获得的实验数据,如何利用SPSS进行条件Logistic回归模型分析。
条件逻辑回归模型
实验设计方法文章中介绍了如何通过巧妙的实验设计来控制非实验处理因素,从而使实验结果更加的准确。例如,很多的医学实验会采用病例对照实验,采取1:1或者1:N配比的方法来选择实验对象,即一个病例和一个对照或一个病例和N个对照,使得病例和对照在除了实验因素以外的其它非实验因素尽可能相同,这样的实验设计方法称为配对实验。通过配对试验设计获得的数据如果采用逻辑回归模型分析,应当使用条件(配对)逻辑回归模型。下表是按1:1配对设计收到上来的实验数据:
配对实验设计中,每一个配对组都包括病例组和对照组,采集他们的m项指标数值(m个实验因素),从x1到xm,那么该实验设计的第i配对组的条件逻辑回归模型可以表示为:
可以发现,不同配对组间,m个实验因素对因变量logit(P)的影响效果是相同的,它们对应的回归系数a1,……,am完全相同。不同配对组的回归模型的区别在于常数项bi,也就是截距,反映了非实验因素对因变量的影响程度不同。
配对实验设计将每个配对组分成病例组和对照组,如果将两个组的指标数值相减,那么就可以将非实验因素造成的不同配对组间的截距差异抵消,再将这些相减后的指标数值代入逻辑回归模型。最终得到的条件逻辑回归模型中是没有常数项的,如下式所示:
SPSS没有为条件逻辑回归模型设置专门的菜单选项,而是将该功能整合进入多元逻辑回归的菜单项中。当SPSS发现因变量中只有一个数值时,就会启动条件逻辑回归模型分析(病例组是否患病变量的数字代号是1,对照组的为0,选入对话框的因变量等于病例组减去对照组,所以因变量都为1)。此外,所有的自变量是相减后产生的,所以都要选为协变量,而不是根据原来的数据类型有的选为因子,有的选为协变量。这种条件逻辑回归分析方法只适用于1:1的配对组实验数据处理。
案例分析
某课题组的研究方向是子宫内膜癌发生机制。经过前期的研究基础,他们发现雌激素的摄入量与患子宫内膜癌有关,为了弄清楚该推测是否正确,该课题组对退休妇女进行调查。课题组采用的实验方案是配对实验,为了排除非实验因素的影响,在选择对照组样本时,需要满足以下条件:与病例组(患有子宫内膜癌)患者的年龄相差不超过一岁,婚姻状况相同,居住在同一小区。考察的实验因素(自变量)包括是否服用雌激素、体重、胆囊病史、服用其他非雌激素药物。共收集到63个配对组数据,如下图所示:
分析步骤
1、选择菜单【分析】-【回归】-【多元Logistic】,在跳出的对话框进行如下操作:将是否患病选为因变量,将相减后的体重、是否服用雌激素、是否有胆囊炎病史和是否服用非磁性激素药物选为协变量(自变量)。
2、点击【模型】按钮,因为通过配对实验设计得到的数据,需要用条件逻辑回归模型来分析,而模型不存在常数项,因此需要在模型对话框中,将默认选中的模型截距取消。
3、点击继续,然后点击确定,输出结果。
结果解释
1、警告提示;结果首先会出现一个警告提示:因变量只具有一个有效值,将拟合条件Logistic回归模型,这个和我们前面介绍的内容相同。
2、模型拟合信息;与其它逻辑回归分析一样,分析结果会输出模型的拟合信息,对数似然检验的显著性小于0.05,可以说明拟合的模型中,至少有一个自变量的回归系数不等于0,拟合的模型是有效模型。结果同时输出三个伪R方值,它们的值与前面介绍的模型伪R方值相比是比较高的,达到0.39以上,说明模型效果不错。
3、回归系数的似然比检验结果。该结果展示从当模型中分别剔除每一个自变量后拟合新的条件Logistic回归模型的负-2对数似然值,用于考察是否能够将该自变量从当前模型中剔除。可以看出体重、是否服用非雌激素药物的显著性都大于0.05。提示可以进一步对模型进行优化。
4、回归参数表;
从结果可知,服用雌激素的妇女,她们罹患子宫内膜癌的相对危险系数(OR值)是未服用雌激素妇女的14.851倍。有胆囊病史的妇女,她们患子宫内膜癌的相对危险系数(OR值)是没有胆囊病史妇女的6.270倍。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21