
SPSS:T检验、方差分析、非参检验、卡方检验的使用要求和适用场景
一、T检验
1.1 样本均值比较T检验的使用前提
正态性;(单样本、独立样本、配对样本T检验都需要)
连续变量;(单样本、独立样本、配对样本T检验都需要)
独立性;(独立样本T检验要求)
方差齐性;(独立样本T检验要求)
1.2 样本均值比较T检验的适用场景
单样本T检验(比较样本均数和总体均数);
操作:打开 分析—比较均值—单样本t检验
要求:正态性(可以用K-S检验法,在SPSS中的“分析”–“非参数检验”—“单样本”中;或者直接根据直方图、P-P图,Q-Q图来观察或根据偏度峰度法来分析)
说明:由中心极限定理可知,即使原数据不符合正态分布,只要样本量足够大时样本均数分布仍然是正态的。只要数据不是强烈的偏正态,没有明显的极端值,一般而言单样本t检验都是可以使用的,分析结果都是稳定的。
独立样本T检验(比较成组设计的两个样本);
操作:打开 分析—比较均值—独立样本t检验
我们输入数据的时候,两个样本的数据是要在一列变量里的,另外还有一列二分类变量为这列因变量做标注。
要求:独立性、正态性(对正态性有耐受性)、方差齐性(影响大,检验更有必要,使用Levene’s检验,两样本T检验中提供Levene’s检验,如需更详细的检验结果可在“分析”–“描述统计”–“探索”中进行)
说明:各样本相互独立,且均来自于正态分布的样本,各样本所在总体的方差相等;
* 疑问:独立性怎么检验?有些数据可以根据现实环境判断;*
配对样本T检验(如用药前和用药后的两个人群的样本、同一样品用两种方法的比较)
操作:打开 分析—比较均值—配对样本t检验
要求:正态性(配对样本等价于单样本T检验,检验的是两个样本对应的差值,初始假设为差值等于0)
二、单因素方差分析
2.1 单因素方差分析的基本思想
基本思想:变异分解,总变异=随机变异+处理因素导致的变异,又可以分解为总变异=组内变异+组间变异,F=组间变异/组内变异,F的值越大,处理因素的影响越大。
2.2 单因素方差分析的使用前提
独立性:不满足独立性会有很大的影响,因为信息存在“重叠”的部分
疑问:在哪儿可以验证?卡方检验?卡方检验检验的是两个分类变量
正态性:对正态性的要求是稳健的
方差齐性:检验方法除了Levene’s检验,还可以有其他的检验方法:Bartleet法(比较各组方差的加权算数平均数和几何均数)、Hartley法(样本量相同时使用)、Cochran法(样本量相同时使用)。
方差分析对变量的类型有要求吗?应该分析的都是连续变量
2.3 单因素方法分析的使用前提不满足时变换方法
对数变换、平方根变换、平方根反正弦变换、平方变换、倒数变换、Box-Cox变换(分段函数)
2.4 单因素方差分析的适用场景
T检验只能检验两组样本的均数差,多组样本的时候就需采用方差分析;
操作:打开分析—比较均值—均值 进行预分析,可以大致看出各均值是否相同,方差是否齐性;再进行 打开 分析—比较均值—单因素anova;
适用场景:均数间的多重比较(全部两两比较)、各组均数的精细比较(可以指定要比较的两个组,通过设定系数)、组间均数的趋势检验(为了利用分组变量中体现出的次序信息,目的不是为了拟合线性或非线性的模型,而是希望知道因素的水平改变时均数的变化趋势)
2.5 方差分析结束后如均值不同可进行两两比较(事前比较、事后比较)
LSD法:用于事先计划好的比较,最灵敏;检验水准没有校正,每次都是α
Sidak法:第二灵敏;
Bonferroni法:用于事先计划好的比较,第三灵敏;
Scheffe法:多用样本含量不等的情况,第四灵敏;
Dunnett法:常用于多个实验组和一个对照组的比较,第五灵敏;
寻找同质亚组的检验方法:
S-N-K法:将所有样本分为多个子集;
Tukey法:任意两组比较,要求样本含量相同,MEER不超过α;
Duncan法:与SNK法类似;
备注:
CER:每进行一次比较犯一类错误错误的概率;
EERC:完全无效假设检验下,做完全部比较犯一类错误的概率;
MEER:部分或者任何完全假设下,犯一类错误的最大概率值,即最大实验误差率。
疑问:单因素方差分析的事前检验和事后检验有什么区别,为什么结果不同??
三、非参数检验
3.1 非参数检验的基本思想
非参数检验的意思是指整个推断过程和结论均和原总体参数无关,而不是不利用参数
3.2 非参数检验的优势
稳健性;
对数据的测量尺度、数据类型无约束;
适用于小样本、无分布样本、数据污染样本、混杂样本等;
3.3 非参数检验使用前提
有序、名义变量,这类数据的分布形态一般未知,均值方差等数据无意义;
样本分布未知;
样本数据不满足正态分布,即便是经过变量变换;
方差齐性不满足,即便是经过变量变换;
总体分布正态,连续变量,但样本容量极小,如10以下;
3.2 非参数检验适用情形
单样本非参数检验
K-S检验:针对连续变量,考察是否符合正态分布
操作:打开–分析–非参数检验–单样本
二项分布检验:针对两分类变量,考察是否符合二项分布
操作:打开–分析–非参数检验–单样本
游程检验:考察总体的随机性
操作:打开–分析–非参数检验–单样本
两个独立样本的非参数检验(无效假设为两样本的中心位置是否相等)
Mann-Whitney U检验,两样本秩和检验,应用范围最广;
Kolmogorov-Smirnov Z检验:检验两个样本的累积频数分布曲线,判断两个样本的分布是否相同;
Moses Extreme Reactions 检验:Moses极端反应检验,单侧检验
Wald-Wolfowitz Runs 检验:单侧检验,无论是集中趋势、离散趋势、偏度的波动情况都能检测出来,如果只是检查中心位置,最好不用,检验两样本是否来自同样的分布;
操作:打开 分析—非参数检验—独立样本
多个独立样本的非参数检验
Kruskal-Wallis H检验(类似Wilcoxon符号秩检验,两样本在多样本上的推广)
中位数检验
Jonckheere-Terpstra检验:对连续变量和有序分类资料都使用,分组变量为有序分类资料时,检验效能要高于Kruskal-Wallis H检验
操作:打开 分析—非参数检验—独立样本
两个配对样本(求出差值,查看中位数是否为0,目的就是为了检验均值是否相等)
sign符号检验:只利用了符号信息,差值是否一半为正一半为负;
Wilcoxon符号秩检验:利用了符号和差值的大小顺序(符号+秩序)
操作:打开 分析—非参数检验—相关样本
多个相关样本非参数检验
Friedman 检验:基本思想是同区组的处理值和计算的秩比较才有意义,还附带齐性子集结果给出了准确的两两比较信息;
Kendall协和系数检验:为了检验各组评价是否一致,Friedman检验只能说明尚不能认为有差异,但是无法评判一致性,Kendall方法针对连续变量,
Cochran检验:有些评价只能用是否、好坏等二元数据来判断,Cochran只适用于二分类变量,用Kendall方法会有很多的打结现象。
操作:打开 分析–非参数检验–相关样本
通用方法—秩变换分析方法
前面有关秩的分析方法其实都是秩变换方法的不同应用,分析方法中可以直接将秩求出后再进行分析。
操作:转换 — 个案排秩(也可以指定生成符合正态分布的秩)
四、卡方检验
4.1 卡方检验的基本思想
以卡方分布为基础,计算观察值和期望值之间的偏离程度;
4.2 卡方检验的使用前提
最小期望频数均大于1
至少4/5的单元格期望频数大于5
计算时如果单元格期望频数小于5要和其他种类合并
样本观察值量超过50
4.3 卡方检验的使用目的
考察无序分类变量各水平在两组或多组间的分布是否一致;
检验某个连续变量的分布是否和理论分布一致;
分类变量的概率是否等于指定概率;
检验两个分类变量是否独立;
检验控制了其中几个因素后,剩余的两个分类变量是否独立;
检验两种方法的结果是否一致;
4.4 卡方检验的适用场景
单样本卡方检验
操作: 打开 分析–非参数检验–单样本
两样本卡方检验
操作: 打开 分析–描述统计–交叉表
两分类变量间关联程度的度量:定性描述两个分类变量是否存在关联(更为详细的可以根据相关分析)
操作: 打开 分析–描述统计–交叉表
Kappa一致性检验(用于配对样本,如两个人针对一个事物的评价)
用于配对样本的检验,Kappa检验的结果是两个人的评价是否是相关的
操作: 打开 分析–描述统计–交叉表
Mcnemar 配对卡方检验
Kappa检验只能看出两者是否有关联,但是不能判断是否一致,Mcnemar 配对卡方检验就可以解决两者是否一致的问题
操作: 打开 分析–描述统计–交叉表
分层卡方检验
可以控制一个因素,如收入对车辆购买率的影响,可以将城市作为分层因素,从而可以得到更准确的结果,但是SPSS中只能进行两分类变量的检验,不能进行多分类的检验,且分层因素和要分析的因素之间如果存在交互关系也不能进行检验。
操作: 打开 分析–描述统计–交叉表
4.5 备注
相对危险度(RR)
RR=试验人群反应阳性的概率/对照组人群反应阳性的概率
RR=1,说明试验因素反应阳性没有关联
RR<1,说明试验因素导致反应阳性的发生率降低
RR>1,说明试验因素导致反应阳性的发生率升高
优势比(OR)
OR=(反应阳性组中实验因素阳性人数/反应阳性组中实验因素阴性人数)/(反应阴性组中实验因素阳性人数/反应阴性组中实验因素阴性人数)
OR>1,说明该试验因素更容易导致实验结果为阳性
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21