
一般在建立好Cox模型之后,需要对模型进行诊断。诊断内容包括模型的前提条件,诸如Cox模型的PH假定(比例风险假定),共线性假定等。本篇我们通过合实际例子讲解Cox模型诊断过程,实现软件R语言。
1.1 COX模型的诊断内容
Cox模型的诊断一般包括三方面的内容:
比例风险假定;
模型影响点(异常值)识别;
比例风险的对数值与协变量之间的非线性关系识别;
对上述三方面的诊断,常见的方法为残差法。
Schoenfeld残差用于检验比例风险假定;
Deviance残差用于影响点(异常值)识别;
Martingale残差用于非线性检验;
1.2 R中用于评估Cox模型的包
我们将会用到以下两个包:
survival #用于cox模型建立
survminer #用于cox模型诊断结果的可视化
安装包
install.packages(c("survival","survminer"))
加载包
library("survival")
library("survminer")
1.3 建立Cox模型
我们利用survial包中自带的肺癌数据“data(lung)”建立cox模型。
library("survival")
res.cox <- coxph(Surv(time, status) ~ age + sex +wt.loss, data =lung)#模型中有三个变量;
res.cox#显示模型结果
Call:
coxph(formula = Surv(time, status) ~ age + sex + wt.loss,data = lung)
coefexp(coef) se(coef) z p
age 0.02009 1.02029 0.00966 2.08 0.0377
sex -0.52103 0.59391 0.17435 -2.99 0.0028
wt.loss 0.00076 1.00076 0.00619 0.12 0.9024
Likelihood ratio test=14.7 on 3 df, p=0.00212
n= 214, number of events= 152
(14 observationsdeleted due to missingness)
1.4 模型诊断——PH假定
PH假定可通过假设检验和残差图检验。正常情况下,Schoenfeld残差应该与时间无关,如果残差与时间有相关趋势,则违反PH假设的证据。残差图上,横轴代表时间,如果残差均匀的分布则,表示残差与时间相互独立。
R语言survival包中的函数cox.zph()可以实现这一个检验过程。
test.ph <- cox.zph(res.cox)
test.ph
rhochisq p
age -0.0483 0.3780.538
sex 0.1265 2.3490.125
wt.loss 0.0126 0.0240.877
GLOBAL NA 2.8460.416
从上面的结果可以看出,三个变量的P值都大于0.05,说明每个变量均满足PH检验,而模型的整体检验P值0.416,模型整体满足PH检验。
在R语言 survminer中ggcoxzph( )函数可以画出Schoenfeld残差图。
ggcoxzph(test.ph)
上图中实线是拟合的样条平滑曲线,虚线表示拟合曲线上下2个单位的标准差。如果曲线偏离2个单位的标准差则表示不满足比例风险假定。从上图中可见,各协变量满足PH风险假设。
另一种检查比例风险假定的图形方法是绘制log(-log(S(t)))与t或log(t)是非平行,这个方法只能用于协变量是分类变量的情形。
如果违反比例风险假设可以通过以下方式解决:
模型中添加协变量与时间的交互相应;
分层分析;
至于如何实现,我们后期再做介绍。
我们可以通过绘制Deviance残差图或者dfbeta值实现上述诊断。在R语言survminer中ggcoxdiagnostics()函数可以画出Deviance残差图。
ggcoxdiagnostics(res.cox,type = "deviance",
linear.predictions = FALSE,ggtheme = theme_bw())
![]()
残差值均匀的分布在0上下,表明满足上述假定。
ggcoxdiagnostics(res.cox,type = "dfbeta",
linear.predictions = FALSE,ggtheme = theme_bw())
![]()
影响点的可能来源于数据录入错误,样本中的极值点、协变量不均衡,数据不足等。对本例,上图显示,将dfbeta值大小与回归系数比较表明,即使某些dfbeta值非常大,但它们不足以对模型系数的估计值产生影响。
1.6 模型诊断——非线性诊断
一般情况下,我们假设协变量与-log(s(t))之间是线性关系。通过绘制Martingale残差图可以实现模型协变量的非线性诊断。非线性诊断一般是针对模型中的连续型变量。
在R语言survminer中ggcoxfunctional()函数可以画出Martingale残差图。
ggcoxfunctional(Surv(time, status) ~ age + log(age) + sqrt(age),data = lung)
![]()
图中显示年龄局部有非线性趋势,但整体表现出线性趋势。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10