京公网安备 11010802034615号
经营许可证编号:京B2-20210330
要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴的定义逻辑与分布检验的需求来分析。以下从 K-S 图的本质、横轴设计原则及实际应用场景展开说明:
K-S 图(Kolmogorov-Smirnov 图)的核心是通过样本累积分布函数(CDF)与理论累积分布函数的对比,判断样本是否来自某一理论分布(如正态分布、均匀分布)。其横轴的设计需服务于 “准确反映数据的数值分布特征”,而非 “强制划分等频率区间”,具体逻辑如下:
K-S 图的横轴本质是样本数据的取值范围或有序排列的样本点,纵轴是 “累积概率”(样本累积频率 / 理论累积概率)。无论是手动绘制还是用工具(如 Python 的scipy、Excel)生成,横轴的核心功能是 “呈现数据本身的数值间隔”,而非 “按频率分组”:
若数据是连续型(如用户消费金额、设备运行温度),横轴通常按数据的自然数值范围进行等距划分(例如消费金额 0-100、100-200、200-300 元),或直接使用 “排序后的样本点”(如将 100 个样本按数值从小到大排列,横轴为 1-100 个有序样本的具体数值);
若数据是离散型(如用户购买次数 1、2、3 次),横轴直接按离散数值的自然顺序排列(1、2、3...),无需刻意等距或等频。
“等频” 是指将数据划分为若干区间,每个区间包含的样本数量相等(如将 100 个样本分为 5 组,每组 20 个)。这种划分方式会扭曲数据的实际分布结构,与 K-S 检验的核心目标(检验分布一致性)相悖,具体问题如下:
破坏数值的自然间隔,误导分布判断
等频划分可能导致 “数值跨度差异极大的区间被强行归为一组”。例如分析用户年龄时,若按等频划分,可能出现 “18-22 岁(跨度 4 岁)” 与 “45-65 岁(跨度 20 岁)” 同属一个区间的情况,横轴刻度会被压缩或拉伸,使得累积分布曲线无法真实反映年龄本身的分布特征(如是否符合正态分布)。
违背 K-S 检验的 “分布位置与形状对比” 逻辑
K-S 检验关注的是 “样本分布与理论分布在各个数值点上的累积概率差异”(即 D 统计量,最大垂直距离)。若横轴按等频划分,相当于人为改变了 “数值点的位置密度”,导致部分数值区间被过度聚焦(如密集的小跨度区间),部分区间被忽略(如稀疏的大跨度区间),无法准确计算真实的 D 统计量,进而影响检验结论的可靠性。
在企业数据分析中(如检验 “用户消费额是否符合正态分布”“设备故障间隔是否符合指数分布”),CDA 分析师绘制 K-S 图时,横轴的设计需结合数据类型与业务目标,核心原则是 “还原数据的自然分布特征”:
若数据范围较窄(如某产品单价 80-120 元),可按等距划分(如每 5 元一个区间:80-85、85-90...),横轴刻度均匀,便于直观对比样本 CDF 与理论 CDF 的重合度;
若数据范围广且存在极端值(如用户 lifetime value 0-10000 元),可先对数据做对数转换(缩小极端值影响),再按转换后的数值等距划分,或直接使用 “排序后的样本点”(横轴为样本序号,纵轴为累积概率),避免区间划分带来的偏差。
离散型数据:直接按 “数值顺序” 排列
例如检验 “某平台日均订单量(100-500 单)是否符合泊松分布”,横轴直接按订单量的离散数值(100、101、102...500)排列,纵轴为累积概率,确保每个数值点的分布特征都能被清晰呈现。
K-S 图的横轴设计需围绕 “准确反映数据数值分布” 的核心目标,以 “等距划分”(连续型数据)或 “数值有序排列”(离散型数据)为主,绝对不建议使用 “等频” 。因为等频会破坏数据的自然数值间隔,导致分布检验结果失真,而等距 / 有序排列能最大程度还原数据的真实分布特征,帮助 CDA 分析师得出可靠的分布检验结论(如判断样本是否符合业务所需的理论分布,为后续建模、预测提供依据)。
如果在实际绘制 K-S 图时遇到数据处理难题(如极端值如何处理、区间宽度如何设定),可以结合具体业务数据(如零售行业的客单价、金融行业的信贷额度)进一步探讨优化方案。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08