京公网安备 11010802034615号
经营许可证编号:京B2-20210330
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师
今天我将为大家带来一个关于用户私域用户质量数据分析的案例分享,主要围绕三部分来进行阐述。
学习入口:https://edu.cda.cn/goods/show/3853?targetId=6765&preview=0
我们以一家专注于私域运营的企业为案例,这家企业的运营模式主要通过社群拉新实现用户增长,主要采用线上拉新的模式获取用户。
线上拉新模式主要是由商务拓展(BD)团队寻找商家合作,由商家邀请用户加入社群。

之后,企业还推出了一种地推拉新模式,即线下拉新。线下拉新由地推人员邀请用户进群,用户进群后同样可以领取优惠券并下单。
因此,需要对线上拉新和线下拉新两种模式下的用户各项指标进行对比分析,以评估其交易转化情况。
我们先来分析下关注用户的物理特征,包括末次访问城市、90天内下单情况以及末单物理城市等。

本次线下拉新试点选择在长沙进行。数据显示,末次访问城市中,仅有70%的用户位于长沙,其余30%的用户来自其他城市。
在90天内有下单行为的用户占比65%,还有35%的用户没有下单行为。
从城市来看,62%的订单收货地址在长沙,3%的订单收货地址来自其他城市。
我们从三个交易指标进行分析:90天内人均交易频次、客单价和平台补贴率。

从数据可以看出,活跃用户的交易频次更高,而线下新客和线上新客的交易频次相对较低。
综合来看,与长沙社群活跃用户以及整体新客交易数据对比,本次线下拉新成功的用户具有以下特征:交易频次更低、实付客单更高、平台补贴率更低。
对比线下进群(地推模式)和线上拉新(全国范围的线上模式)这两种模式下的用户数、纯新用户占比、退群情况、领券和核销情况。

用户数:
纯新用户占比:
退群情况:
领券和核销情况:
综合来看,与线上进群用户对比,线下进群用户具有以下特征:
通过以上分析,我们可以看到,线下拉新模式虽然在用户数和退群率上表现较好,但在领券率和核销订单量上表现较差。
同期群分析是一种量化行为指标的方法,通过分析不同群体在特定时间段内的行为变化,来衡量指定对象组的持续性行为差异。

在社群运营中,活跃率是一个极为重要的指标,而同期群分析能够帮助我们深入了解用户在社群中的每日活跃情况。
地推模式下的用户质量并未达到预期,其退群率、领券率和核销率等关键指标均低于线上拉新模式。

具体来看:
这表明,尽管地推模式在用户数量上可能有优势,但从用户活跃度和转化效率来看,线上拉新模式的用户质量更高。
同期群分析通过量化行为指标,分析不同群体在特定时间段内的行为变化,帮助我们衡量用户在社群中的活跃情况。

通过同期群分析,我们发现:
这进一步证实了线上拉新模式在用户活跃度方面的优势。
给大家介绍3种非常实用的数据分析模型:
帕累托分析模型基于帕累托原则(80/20法则),通过识别和聚焦于最重要的20%因素来优化资源和提升效率。
举个例子,假设我们是一家电子商务公司,想要分析造成订单延迟的原因,并使用帕累托分析模型确定最主要的问题因素。

根据帕累托图,我们发现物流问题和系统故障占据了主要的比例,合计占据了约80%的订单延迟原因。因此,我们可以将重点放在解决这两个问题上,以最大程度地缩短订单的延迟时间。
在使用帕累托分析模型时,需要注意以下几点:
波士顿矩阵模型是一种经典的产品组合分析工具,用于评估企业产品组合中各个产品的市场增长率和市场份额。

举个例子,假设我们是一家消费电子公司,拥有多款产品,现在我们来模拟数据并应用波士顿矩阵模型进行分析。

通过这张图,我们可以将各产品定位到波士顿矩阵的不同象限中。
比如:产品A定位为明星产品,产品B为问题产品, 产品C为现金牛,产品D为瘦狗产品。根据不同定位,我们可以制定相应的战略,比如加大对产品B的市场投入以提升其市场份额,优化产品C的成本结构以提高利润率等。
数据分析模型和方法有很多,在工作中可以根据实际需要灵活选择。
漏斗模型是用户行为分析中最重要的模型之一,用于跟踪用户在完成特定目标过程中的流失情况。

其核心步骤包括:
学习入口:https://edu.cda.cn/goods/show/3853?targetId=6765&preview=0
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09