京公网安备 11010802034615号
经营许可证编号:京B2-20210330
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师
今天我将为大家带来一个关于用户私域用户质量数据分析的案例分享,主要围绕三部分来进行阐述。
学习入口:https://edu.cda.cn/goods/show/3853?targetId=6765&preview=0
我们以一家专注于私域运营的企业为案例,这家企业的运营模式主要通过社群拉新实现用户增长,主要采用线上拉新的模式获取用户。
线上拉新模式主要是由商务拓展(BD)团队寻找商家合作,由商家邀请用户加入社群。

之后,企业还推出了一种地推拉新模式,即线下拉新。线下拉新由地推人员邀请用户进群,用户进群后同样可以领取优惠券并下单。
因此,需要对线上拉新和线下拉新两种模式下的用户各项指标进行对比分析,以评估其交易转化情况。
我们先来分析下关注用户的物理特征,包括末次访问城市、90天内下单情况以及末单物理城市等。

本次线下拉新试点选择在长沙进行。数据显示,末次访问城市中,仅有70%的用户位于长沙,其余30%的用户来自其他城市。
在90天内有下单行为的用户占比65%,还有35%的用户没有下单行为。
从城市来看,62%的订单收货地址在长沙,3%的订单收货地址来自其他城市。
我们从三个交易指标进行分析:90天内人均交易频次、客单价和平台补贴率。

从数据可以看出,活跃用户的交易频次更高,而线下新客和线上新客的交易频次相对较低。
综合来看,与长沙社群活跃用户以及整体新客交易数据对比,本次线下拉新成功的用户具有以下特征:交易频次更低、实付客单更高、平台补贴率更低。
对比线下进群(地推模式)和线上拉新(全国范围的线上模式)这两种模式下的用户数、纯新用户占比、退群情况、领券和核销情况。

用户数:
纯新用户占比:
退群情况:
领券和核销情况:
综合来看,与线上进群用户对比,线下进群用户具有以下特征:
通过以上分析,我们可以看到,线下拉新模式虽然在用户数和退群率上表现较好,但在领券率和核销订单量上表现较差。
同期群分析是一种量化行为指标的方法,通过分析不同群体在特定时间段内的行为变化,来衡量指定对象组的持续性行为差异。

在社群运营中,活跃率是一个极为重要的指标,而同期群分析能够帮助我们深入了解用户在社群中的每日活跃情况。
地推模式下的用户质量并未达到预期,其退群率、领券率和核销率等关键指标均低于线上拉新模式。

具体来看:
这表明,尽管地推模式在用户数量上可能有优势,但从用户活跃度和转化效率来看,线上拉新模式的用户质量更高。
同期群分析通过量化行为指标,分析不同群体在特定时间段内的行为变化,帮助我们衡量用户在社群中的活跃情况。

通过同期群分析,我们发现:
这进一步证实了线上拉新模式在用户活跃度方面的优势。
给大家介绍3种非常实用的数据分析模型:
帕累托分析模型基于帕累托原则(80/20法则),通过识别和聚焦于最重要的20%因素来优化资源和提升效率。
举个例子,假设我们是一家电子商务公司,想要分析造成订单延迟的原因,并使用帕累托分析模型确定最主要的问题因素。

根据帕累托图,我们发现物流问题和系统故障占据了主要的比例,合计占据了约80%的订单延迟原因。因此,我们可以将重点放在解决这两个问题上,以最大程度地缩短订单的延迟时间。
在使用帕累托分析模型时,需要注意以下几点:
波士顿矩阵模型是一种经典的产品组合分析工具,用于评估企业产品组合中各个产品的市场增长率和市场份额。

举个例子,假设我们是一家消费电子公司,拥有多款产品,现在我们来模拟数据并应用波士顿矩阵模型进行分析。

通过这张图,我们可以将各产品定位到波士顿矩阵的不同象限中。
比如:产品A定位为明星产品,产品B为问题产品, 产品C为现金牛,产品D为瘦狗产品。根据不同定位,我们可以制定相应的战略,比如加大对产品B的市场投入以提升其市场份额,优化产品C的成本结构以提高利润率等。
数据分析模型和方法有很多,在工作中可以根据实际需要灵活选择。
漏斗模型是用户行为分析中最重要的模型之一,用于跟踪用户在完成特定目标过程中的流失情况。

其核心步骤包括:
学习入口:https://edu.cda.cn/goods/show/3853?targetId=6765&preview=0
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24