
在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库和开发工具,为数据科学、机器学习等领域的学习者和从业者提供了极大便利。如果你正准备投身 Python 课程学习,那么正确安装 Anaconda 就是关键的第一步。本文将详细且清晰地为你介绍在 Windows 系统和 MacOS 系统下的 Anaconda 安装教程,让你轻松搞定安装难题,快速开启 Python 学习之旅。
注:分Windows系统下安装和MacOS系统安装
第①步 在清华大学镜像下载Anaconda安装包。
下载地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=D
下载完成之后,双击下图所示的exe安装文件
第②步 点击Next进行下一步安装
第③步 同意协议,选择I Agree
第④步 选择用户,如果是多用户的选择All Users
第⑤步 指定安装路径,点击Next
第⑥步 这里先不用选第一个选项:Add Anaconda3 to the System PATH environment variable,只勾选第二个Register。推荐安装之后手动配置系统变量System PATH environment,避免配置导致后期使用上的问题。
第⑦步 需要静等一会儿!看到Completed即表示安装完成,后面连续点击Next即可
有时候在安装好Anaconda后,在cmd黑色命令窗口使用一些命令时依然会出现类似:
'conda' 不是内部或外部命令,也不是可运行的程序或批处理文件。
这样的情况大部分是因为在安装的时候,没有勾选将Anaconda环境变量路径自动加入到系统的环境变量中或者有的时候勾选了自动添加也没有设置成功
步骤如下:
进入"我的电脑"-右键-属性-高级系统设置-高级-环境变量
第 ① 步 点击环境变量
第 ② 步 点击环境变量的系统变量里面的"Path"
第 ③ 步 在path中加入你电脑系统安装的Anaconda对应的path环境路径
根据自己的安装路径填写以下3个,示意图中是在默认位置安装的,自选安装路径的话,path路径前面部分不一样,后面部分一样,也是以Anaconda3, Anaconda3Librarybin, Anaconda3Scripts 这样结尾的。
添加以下路径到环境变量中去:(以默认的安装路径为例)
C:ProgramDataAnaconda3
C:ProgramDataAnaconda3Scripts
C:ProgramDataAnaconda3Librarybin
第 ④ 步 然后确定,确定,一路按确定,这样环境就配置完成了。
补充 怎么找我的Anaconda环境变量Path路径文件?
方法如下:
① 对"jupyter notebook"的快捷方式右击--属性
② 然后点击**"打开文件所在位置"**,此时弹出的地址就有我们要的文件路径
③ 鼠标上滑,就可以看到我们要的Anaconda的Path路径对应的文件夹了
如果是老版的win系统,创建环境变量
添加文件路径,需要用英文的分号进行分隔
比如:
我选在变量值前面添加环境变量
C:ProgramDataAnaconda3;C:ProgramDataAnaconda3Librarybin;连接原来的存在的变量值
这里我是举了一个例子,需要根据自己的实际安装路径添加哦
第 ① 步:在清华大学镜像下载地址下载安装包:[https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=D](https://link.zhihu.com/?target=https%3A//mirrors.tuna.tsinghua.edu.cn/anaconda/archive/%3FC%3DM%26O%3DD =400x)
第 ② 步:打开终端执行命令:bash /Users/fty/Downloads/Anaconda3-2023.09-0-MacOSX-x86_64.sh
第 ③ 步:执行上一步后,就会显示welcome,然后根据它的提示,需要enter的时候就按回车
第 ④ 步:一路回车……直到看到下图提示,输入yes,回车。注意:这里会有一个提示就是安装的路径。
第 ⑤ 步:输入enter
第 ⑥ 步:继续输入yes,回车
第 ⑦ 步:看见**“Thank you for installing Anaconda3!**”表明安装成功啦~~~
输入conda info 测试
掌握了 Anaconda 的安装方法,就为你学习 Python 课程打下了坚实的基础。在后续的 Python 学习过程中,Anaconda 集成的丰富库和工具将助力你更高效地学习和实践,无论是数据分析、机器学习,还是其他 Python 应用领域,都能轻松应对。现在就行动起来,安装好 Anaconda,开启你的 Python 编程精彩之旅吧!
课程学习入口:https://edu.cda.cn/goods/show/3429?targetId=5724&preview=0
数据分析,未来已来,免费的学习机会不容错过,期待在课程中与你一同开启数据洞察新世界
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18