
ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业实际场景,给大家整理一套详细的应用流程。
AB测试是互联网行业在流量红利消退背景下实现精细化运营的核心工具。并且AB测试进阶为数据分析人员关键技能,以前Excel为主力,SQL为加分项;现在SQL成为基础,AB测试进阶为关键能力。
AB测试借鉴医学双盲实验原理,通过构建实验组/对照组、随机分配同质化用户、保证样本规模三大条件,验证产品改版的实际效果。在增量转存量的竞争格局中,巨型APP占据用户主要时长,新功能上线需通过分流测试精准捕捉用户偏好,避免主观认知偏差。
该方法通过统计验证功能改版对用户满意度、留存率等核心指标的影响,成为企业优化用户体验、提升存量价值的关键科学决策工具,标志着互联网行业从粗放增长转向数据驱动的精耕时代。
基于ABtest的核心原理,AB测试也不是万能的。核心在于是否有条件开展实验搜集数据。
主要是界面、功能、流程优化,可在原基础上分流量验证效果。不确定新设计好不好?让一半用户用老版本,一半用新版,看哪个版本用户更喜欢、转化更高。
通过分流对比算法模型效果。工程师开发了两种算法,同步上线对比:A组用旧算法,B组用新算法,看哪个能让用户刷得更久、点得更多。
搞营销活动时,比如双11促销,不同广告文案哪个吸引人?早中晚哪个时段发短信效果好?针对白领还是学生推广更有效?分人群测试立马见分晓。
变量不可控(如跨APP联动策略,外部干扰因素过多)。样本量不足,比如统计结果易失准,需基础数据支撑。全量投放的场景,如发布会、全局换LOGO等无法分割用户场景。
AB测试的基本流程我们可以总结为以下一张图:
细化下来的流程梳理:
我们以与大家生活相关的打车场景为例,看看出行平台如何运用ABtest来优化业务。
统计检验:使用T检验、Z检验或贝叶斯方法判断显著性。
由于样本个数为29(少于30)个,是小样本,差值服从t分布。满足配对样本T检验的条件**
- H0原假设: 实验组daily requests与控制组不存在差异
- H1备择假设: 实验组daily requests高于控制组
t,p_twotail = stats.ttest_rel(experiment_group.daily_requests, control_group.daily_requests)
print(f'假设检验的t值={t:.3f} p值={p_twotail:.5f}')
假设检验的t值=-1.472 p值=0.15227
- p>0.05,说明在95%显著水平下,t在统计上不显著的,也就是接受原假设。
如果上线一个功能,直接流量开到50%去做测试,那么如果数据效果不好,或者功能意外出现bug,对线上用户将会造成极大的影响。所以,建议一开始从最小样本量开始实验,然后再逐渐扩大用户群体及实验样本量。
举例:如果某一个app,周一到周五对A做了一个实验,周六周日对用户群B做了同一个实验,结果周末的效果明显较差,但是可能本身是由于周期性因素导致的。所以我们在实验时,一定要排除掉季节等因素。
比如,在推荐算法修改的一个实验中,我们还上线了一个优惠券发放策略优化的实验,那么我们需要将用户划分为4个组:A、老算法+老策略,B、老算法+新策略,C、新算法+老策略,D、新算法+新策略,因为只有这样,我们才能同时进行的两个实验的参与改动的元素,做数据上的评估。
《CDA一级教材》在线电子版正式上线CDA网校,10万+在读,适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09