
在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本文来为大家科普几种数据分析的概念和方法。
描述性分析是数据分析的基础,主要通过对数据的集中趋势、离散程度和分布形态等进行概括和描述,让我们对数据有一个初步的整体认识。
比如,我们想了解一家公司员工的薪资情况。通过计算平均值,能知道员工薪资的总体水平;中位数可以帮助我们找到处于中间位置的薪资值,避免受到极端值的过度影响;众数则能告诉我们出现频率最高的薪资金额。而标准差和方差等指标,能让我们清楚薪资的离散程度,即员工薪资之间的差异大小。
再以电商平台某商品的销售数据为例,通过描述性分析,我们可以了解该商品的平均销量、销量波动范围,以及不同价格区间的销售分布情况。这些信息为后续更深入的分析奠定了坚实基础。
探索性分析则鼓励我们在数据中自由地发现那些隐藏在表面之下的规律和模式。它不拘泥于特定的假设,而是通过各种可视化工具和统计方法,让数据自己 “说话”。
假设我们有一份社交媒体用户行为数据,通过绘制柱状图,我们可能会发现用户不同倾向之间对比起来哪项数据更需要优化;
通过聚类分析,也许能将用户分为不同的群体,每个群体都有独特的行为特征。探索性分析就像一个指南针,为我们指引进一步分析的方向,帮助我们提出有价值的问题和假设。
数据分析概念里,很多变量之间并非孤立存在,相关性分析能告诉我们两个或多个变量之间是否存在关联,以及关联的紧密程度。
例如,在分析某城市房价与城市人均收入的关系时,通过相关性分析,如果得出两者的相关系数较高,说明房价与人均收入之间存在较强的正相关关系,即人均收入增加,房价可能也会随之上升。
但要注意,相关性并不等同于因果关系,我们还需要进一步深入分析来确定因果机制。相关性分析在市场调研、金融风险评估等众多领域都有着广泛的应用,帮助我们从纷繁复杂的数据中找到关键的关联线索。
回归分析是一种强大的数据分析方法,它不仅能揭示变量之间的关系,还能基于这种关系进行预测。
以某电子产品的销售数据为例,我们可以将销售量作为因变量,将价格、广告投入、市场竞争程度等作为自变量,构建回归模型。
通过对历史数据的拟合和分析,我们就能预测在不同价格策略、广告投入水平下,产品未来的销售量。这对于企业制定生产计划、营销策略以及资源分配都具有重要的指导意义。
回归分析在经济预测、销售预测、需求预测等方面都发挥着关键作用,帮助企业提前布局,抢占市场先机。
AI时代,数据是新时代的石油,其改变不仅仅是产业的格局,还有人的认知与决策模式大数据时代,我们收集的数据越来越多,但如何从海量的数据中提取到有价值的信息却越来越难,而数据分析就是从海量的原始数据中获取有价值信息的过程。通过数据收集、清洗、加工和整理,使用科学的统计方法、工具、可视化技术、算法等获取有价值的信息或现象的洞察,以此帮助企业和个人做出更明智的决策。
《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门!
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15