
在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。
很多人都听过“货比三家”这句话吧?其实,这句话的核心就是对比分析的原理——通过比较不同对象或时间的表现,帮助分析人员快速找到差异、发现问题,甚至挖掘出潜藏的机会。
对比分析,说白了就是把数据摆在一起“看差别”。它的核心目的很简单:通过比较找出谁比较好、谁比较不好等。无论是对各个区域的销售额进行比较,还是分析业绩各个季度的变化,这种“比一比”的方式都可以帮助分析人员快速了解情况。
横向对比---在同一时间内比较不同对象。例如,A品牌和B品牌的市场占有率。
纵向对比---观察同一对象在不同时间段的表现。例如,今年的销售额和去年的对比。
目标对比---实际结果和目标值之间的差异。例如,本月的实际销售额是否达到计划值?
多维度对比---多个维度同时比较。例如,比较不同型号手机在拍照、续航、内存、屏幕、处理器等方面的综合表现。
对比分析的第一步,是问自己:为什么要对比?
目标不同,分析的方向和方法也会不同。比如:
如果想知道销量的变化情况,需要做时间维度上的纵向对比。
如果想选择更好的供应商,需要横向对比它们在价格、交货速度等指标上的表现。
如果想评估团队绩效,可能需要目标对比,看看实际完成情况。
有时候,对比数据本身也可能会产生误导。举个例子:
同一家公司的销售额,上个月可能是按“含税价”计算,这个月却用“净价”统计。如果不统一口径,数据就没有可比性,强行对比出来的结果也会有偏差。
又比如,不同品牌的市场占有率数据,假设拿到的是一家小城市的报告,而不是全国数据,得出的结论可能并不具有代表性。
对比分析的一个大忌就是“错比”或者“瞎比”。
所以,统一数据口径、确保数据的可信度,是开展对比分析的前提。
很多人听过一句话:问不如表,表不如图。所以,在对比分析中,可视化工具是好帮手,常用的可视化图形有:
用来横向对比不同对象的表现,例如不同产品的月度销量。
多层级数据和组成部分的对比,例如不同大类产品及其下属小类产品的销售情况。
适合多维度对比,例如不同产品在价格、质量、功能上的综合表现。
展示各部分的构成对比,例如各区域市场占比的变化。
适合显示差异程度的分布,例如用户点击率在页面不同位置的分布情况。
直观展示不同区域之间的差异和分布,比如某产品在各省市地区的市场占有率。
数据可视化是数据分析岗最重要的技能要求之一,在日常工作中,把海量的数据通过可视化的形式展示出来,方便决策制定,所以CDA数据分析师一级把数据可视化作为核心考点。
不同数据来源或统计口径的差异,可能会导致误导性结论。
维度过多时,可能会让人迷失重点。不妨将分析拆解成几个更小的部分逐步进行。
不要只盯着数字看,差异背后可能还隐藏着外部环境的变化,例如季节性因素、政策调整等。
对比分析看似简单,但真正做到深入透彻并不容易。需要我们既有清晰的目标,又能敏锐地发现数据背后的差异和原因。通过合理地运用对比分析,才可以快速找到业务中的问题点,为优化和决策提供方向。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09