京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督学习有Label Propagation和Label Spreading两种。他们的主要区别是第二种方法带有正则化机制。
我们在上篇已经讲解了Label Propagation,本篇我们讲解带有正则的Label Spreading。首先生成一些凹的数据。
# 生成环形数据
import numpy as np
from sklearn.datasets import make_circles
X, y = make_circles(n_samples=200, shuffle=False)
outer, inner = 0, 1
labels = np.full(200, -1.0)
labels[0] = outer
labels[-1] = inner
# 画图
import matplotlib.pyplot as plt
plt.figure(figsize=(4, 4))
plt.scatter(X[labels == outer, 0], X[labels == outer, 1],)
plt.scatter(X[labels == inner, 0], X[labels == inner, 1],)
plt.scatter(X[labels == -1, 0], X[labels == -1, 1], marker=".",);

Label Spreading(标签扩散)算法是一种用于半监督学习的方法,它在Label Propagation的基础上引入了正则化机制。这种机制使得算法在处理噪声数据时更为稳定和健壮。下面是Label Spreading算法的迭代计算过程的详细介绍:
和Label Propagation一样,Label Spreading首先构建一个图,图中的每个节点代表一个数据样本,节点可以是已标记的也可以是未标记的。
节点之间的边表示数据点之间的相似性。这种相似性通常用距离度量(如欧氏距离)或核函数(如高斯核)来计算。边的权重反映了两个数据点之间的相似度。
每个数据点都有一个标签分布向量。对于已标记的数据,这个向量直接表示其标签信息。对于未标记的数据,初始时这个向量通常是均匀分布,或者有其他的初始化方法。
Label Spreading算法构建了一个传播矩阵,用于在迭代过程中更新标签信息。这个矩阵基于节点的相似性权重,但与Label Propagation不同的是,它会引入一个正则化项。
在每次迭代中,对于每个未标记节点,其标签分布根据邻居节点(包括已标记和未标记的节点)的标签信息进行更新。具体地,一个节点的新标签分布是其所有邻居节点的标签分布的加权平均,这个权重由传播矩阵给出。
正则化是Label Spreading的一个关键特点。它帮助算法抵抗噪声和过拟合,提高了算法的鲁棒性。正则化参数控制着标签信息在未标记数据之间传播的强度。
更新完所有未标记节点的标签分布后,这些分布通常需要被归一化,确保它们是有效的概率分布。
算法重复迭代更新过程,直到满足某个收敛条件,如迭代次数上限或者标签分布的变化小于某个阈值。
一旦算法收敛,每个未标记数据点的标签被确定为其标签分布中概率最高的标签。
总的来说,Label Spreading是一个强大而灵活的工具,适用于各种半监督学习场景,尤其是在数据标签稀缺或包含噪声的情况下。
在实际应用中,银行利用标签处理技术构建反欺诈模型,通过对用户行为、交易特征等多维度数据进行分析,定义并应用各种风险标签。这些标签可以帮助银行快速识别异常交易行为,提升反欺诈能力。例如,通过分析黑样本案例特征,银行可以定义如“当天还款后立即交易”等标签,并将其应用于反诈模型的开发和训练。
在Label Spreading算法中,正则化传播矩阵是核心组件之一,用于在迭代过程中调整和传播标签信息。这个传播矩阵通过结合图的相似性结构和正则化机制,有效地平衡了标签信息的传播和抗噪声能力。以下是正则化传播矩阵的关键点:
首先,算法构建一个图,为每个数据点准备一个标签矩阵Y。对于已标记的数据点,标签矩阵的相应行用其标签的独热编码(one-hot encoding)表示;对于未标记的数据点,标签矩阵的相应行初始化为均匀分布或其他方式。
然后,基于KNN或RBF核等方法计算相似性矩阵(通常表示为S),其中每个元素Sij表示节点i和j之间的相似度。
相似性矩阵接着被归一化,以便每个节点的相似度总和为1。这可以通过对矩阵S 的每一行进行归一化来实现,得到归一化的矩阵T。
正则化传播矩阵由归一化的相似性矩阵和一个正则化参数α构建而成。通常,P的计算公式为
其中I是单位矩阵,α是一个介于0和1之间的参数,用于控制传播过程中的正则化程度。
作用:参数α控制了标签信息在原始标签和邻居标签间的平衡。较小的α值更强调邻居节点的标签信息,而较大的α值使算法更加倾向于保持原始标签。 抗噪声能力:通过调整α,Label Spreading算法能够在保持数据内在结构的同时对噪声数据具有一定的抵抗力。
在每次迭代中,当前的标签矩阵Y通过乘以传播矩阵P来更新,即
这样,每个数据点的新标签不仅反映了其邻居的标签信息,也考虑了自身的原始标签α,且受正则化参数的影响。 更新后的标签矩阵Y通常需要被重新归一化,以确保每行(代表一个数据点的标签分布)的总和为1。
这个更新过程重复进行,直到满足某个收敛条件,例如标签矩阵Y的变化小于某个预设的阈值,或者达到预设的最大迭代次数。
一旦算法收敛,每个未标记数据点的标签被确定为其标签分布中概率最高的那个标签。
在Label Spreading算法中,标签矩阵Y用于表示数据点的标签信息。这个矩阵的结构取决于数据集中的标签数量和数据点的数量。下面是标签矩阵的一般结构和特点:
1.结构
尺寸:标签矩阵Y的尺寸是 N*K ,其中N是数据集中数据点的总数(包括已标记和未标记的数据点),而K是不同标签的数量。
内容:
对于已标记的数据点,每一行对应一个数据点,其中每个元素代表该数据点属于某个标签的概率。在典型的实现中,已标记数据的行会用独热编码(one-hot encoding)表示,即对应该数据点实际标签的位置为1,其余位置为0。
对于未标记的数据点,每一行一开始通常初始化为均匀分布,即每个标签的概率相等,或者根据先验知识进行初始化。
2.示例 假设有一个数据集,其中有3个不同的标签(K = 3),共有5个数据点(N = 5),其中前2个点已标记,后3个点未标记。标签矩阵Y可能如下所示:
在这个例子中,第一行和第二行分别表示第一个和第二个数据点的标签(假设分别属于第一个和第二个类别),而最后三行表示未标记数据点的标签分布,这里初始化为均匀分布。
# Label Spreading
from sklearn.semi_supervised import LabelSpreading
label_spread = LabelSpreading(kernel="knn", alpha=0.8) # 正则
label_spread.fit(X, labels)
# Label Spreading打标签后的结果
output= np.asarray(label_spread.transduction_)
outer_numbers = np.where(output == outer)[0]
inner_numbers = np.where(output == inner)[0]
plt.figure(figsize=(4, 4))
plt.scatter(X[outer_numbers, 0], X[outer_numbers, 1],)
plt.scatter(X[inner_numbers, 0], X[inner_numbers, 1],)

随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。

CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27