
随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近的文章。
2023世界经济论坛发布的《未来就业报告》,预测了未来五年内增长最快的十大岗位,其中就包括了数据分析师和科学家、数字化转型人员。
随着各行各业的数字化转型,未来数年全球数据总量将继续保持高速增长态势。如此庞大的数据海洋,若没有专业的数据分析师进行挖掘、整理与解读,那它们就只是一堆毫无价值的乱码。而企业为了在激烈的市场竞争中获取优势,必然需要依靠数据分析师从这些数据中提炼出有价值的信息,如消费者的潜在需求、市场的最新趋势、业务流程中的优化点等。因此,只要数据的 “开采” 与利用需求存在,数据分析师就永远有其用武之地。
一些人担忧数据分析师会被技术所取代。但实际上,这恰恰是数据分析师迎来新飞跃的契机。在 2025 年,掌握先进技术的数据分析师将如虎添翼,能够开展更为复杂、深入和精准的分析工作,为企业提供更高层次的价值服务。
数据分析离不开数学和统计学知识。至少要掌握基本的数学运算,如代数、几何等,这些知识有助于理解数据之间的关系。而统计学更是数据分析的核心工具,重点学习概率、均值、中位数、标准差、相关性、回归分析等概念。
例如,通过计算均值和标准差可以了解数据的集中趋势和离散程度,相关性分析能够帮助我们发现变量之间的关联。
Excel 是一款非常基础且实用的数据处理工具。它可以进行简单的数据录入、整理和计算。例如,通过使用函数(如 VLOOKUP、SUMIF 等)来汇总和关联数据,利用数据透视表功能快速分析数据的不同维度。对于小型数据集的分析和初步探索,Excel 是一个很好的选择。
学习资源:微软官方网站有 Excel 的教程,从基础操作到高级功能都有详细的讲解。此外,网上也有很多 Excel 技巧分享的教程,可以帮助你快速提升 Excel 技能。
数据可视化能够将复杂的数据以直观的图表形式展现出来,帮助我们更好地理解数据和发现规律。Tableau 和 PowerBI 是两款流行的可视化工具。Tableau 具有强大的可视化功能和丰富的图表类型,能够快速创建交互式的可视化作品;PowerBI 则与微软的生态系统紧密结合,方便对 Excel 等数据源进行可视化处理。
学习方式:可以下载这些工具的试用版,通过官方提供的示例数据集进行操作练习。同时,它们的官方网站也有教程和案例分享,帮助你掌握如何将数据转换为有吸引力的可视化图表。
一个完整的数据分析流程通常包括问题定义、数据收集、数据清洗、数据分析、结果解释和决策建议。
如果你想分析一家电商店铺的销售情况,首先要明确问题,如 “哪些产品的销售增长最快?” 然后收集店铺的销售数据,清洗掉其中的错误数据和重复数据,接着运用合适的分析方法(如分类汇总、时间序列分析等)进行分析,最后解释分析结果并提出相应的决策建议,如加大销售增长快的产品的库存和推广力度。
除了前面提到的统计学方法,还需要学习数据挖掘方法,如聚类分析、分类分析等。
聚类分析可以将数据对象划分为不同的群组,例如将客户根据消费行为划分为不同的客户群体,以便企业进行精准营销;分类分析则可以根据历史数据预测新数据的类别,比如预测客户是否会购买某个产品。
可以从身边的数据入手,如分析自己的消费记录、运动数据等。或者从网上找一些公开的数据集,如 UCI 机器学习库中的数据集,进行分析。
数据分析入门需要建立知识体系、掌握工具、学习方法和流程,并通过实践不断积累经验。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程,CDA小程序资料非常丰富,包括题库、考纲等,利用好了自学就能考过。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22