
聚类分析是一种常用的无监督学习方法,旨在将样本数据划分为相似的群组或簇。在R中,有多种聚类分析方法可供选择,包括层次聚类和K均值聚类等。本文将介绍如何使用R进行聚类分析。
在进行聚类分析之前,需要先准备好要分析的数据集。数据通常以矩阵或数据框的形式呈现,其中每行代表一个样本,每列代表一个特征。在这里,我们将使用UCI Machine Learning Repository上的Iris数据集作为示例。该数据集包含150个样本,每个样本有4个特征:花萼长度、花萼宽度、花瓣长度和花瓣宽度。首先,我们需要从网络上下载数据集并导入到R中:
iris <- read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data", header = FALSE)
colnames(iris) <- c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width", "Species")
层次聚类是一种将样本逐步分组的方法,可以形成一个树形结构,称为树状图。在R中,可以使用hclust
函数来执行层次聚类分析。hclust
函数需要一个距离矩阵或相似性矩阵作为输入,因此我们需要首先计算样本之间的距离或相似性矩阵。在这里,我们将使用欧几里得距离来度量样本之间的距离:
dist_mat <- dist(iris[, 1:4], method = "euclidean")
接下来,我们可以使用hclust
函数对距离矩阵进行聚类分析:
hc_res <- hclust(dist_mat, method = "ward.D2")
其中,method = "ward.D2"
表示使用Ward方法进行聚类分析。Ward方法尝试最小化群组内方差的增加量,因此通常能够产生更紧密的群组。执行完聚类分析后,我们可以使用plot
函数来绘制树状图:
plot(hc_res)
从树状图中可以看出,Iris数据集可以被分成3个主要簇。我们还可以使用cutree
函数将每个样本分配到不同的簇中:
cluster_labels <- cutree(hc_res, k = 3)
其中,k = 3
表示我们期望将数据分为3个簇。可以通过以下方式查看每个样本所属的簇:
head(cluster_labels)
#> [1] 1 1 1 1 1 1
K均值聚类是一种迭代方法,旨在将样本分为k个不同的簇,使得每个簇内部的样本之间的距离最小化。在R中,可以使用kmeans
函数来执行K均值聚类分析。kmeans
函数需要指定要分成的簇数,并且通常需要多次运行以避免收敛于局部最小值。
kmeans_res <- kmeans(iris[, 1:4], centers = 3, nstart = 20)
其中,centers = 3
表示我们期望将数据分为3个簇,nstart = 20
表示我们希
望执行20次随机初始化来避免局部最小值。
K均值聚类分析的输出包括每个样本所属的簇标签和每个簇的中心点。我们可以通过以下方式查看分配到每个簇的样本数量:
table(kmeans_res$cluster)
#>
#> 1 2 3
#> 38 50 62
从结果可以看出,Iris数据集被成功地分成了3个主要簇,每个簇都有相似的特征值。
除了树状图之外,我们还可以使用其他方法来可视化聚类结果。例如,我们可以使用ggplot2包中的函数绘制散点图,并使用不同的颜色表示不同的簇:
library(ggplot2)
iris_clustered <- cbind(iris, cluster_labels)
ggplot(iris_clustered, aes(x = Sepal.Length, y = Petal.Width, color = factor(cluster_labels))) +
geom_point()
从散点图可以看出,不同簇的样本在花萼长度和花瓣宽度之间存在明显的差异。
聚类分析是一种有用的无监督学习方法,可以帮助我们发现数据中隐藏的结构。在R中,我们可以使用层次聚类和K均值聚类等多种方法进行聚类分析。在进行聚类分析之前,我们需要准备好要分析的数据集,并选择合适的聚类算法和参数。最后,我们可以通过树状图、散点图等方式来可视化聚类结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15