
聚类分析是一种常用的无监督学习方法,旨在将样本数据划分为相似的群组或簇。在R中,有多种聚类分析方法可供选择,包括层次聚类和K均值聚类等。本文将介绍如何使用R进行聚类分析。
在进行聚类分析之前,需要先准备好要分析的数据集。数据通常以矩阵或数据框的形式呈现,其中每行代表一个样本,每列代表一个特征。在这里,我们将使用UCI Machine Learning Repository上的Iris数据集作为示例。该数据集包含150个样本,每个样本有4个特征:花萼长度、花萼宽度、花瓣长度和花瓣宽度。首先,我们需要从网络上下载数据集并导入到R中:
iris <- read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data", header = FALSE)
colnames(iris) <- c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width", "Species")
层次聚类是一种将样本逐步分组的方法,可以形成一个树形结构,称为树状图。在R中,可以使用hclust
函数来执行层次聚类分析。hclust
函数需要一个距离矩阵或相似性矩阵作为输入,因此我们需要首先计算样本之间的距离或相似性矩阵。在这里,我们将使用欧几里得距离来度量样本之间的距离:
dist_mat <- dist(iris[, 1:4], method = "euclidean")
接下来,我们可以使用hclust
函数对距离矩阵进行聚类分析:
hc_res <- hclust(dist_mat, method = "ward.D2")
其中,method = "ward.D2"
表示使用Ward方法进行聚类分析。Ward方法尝试最小化群组内方差的增加量,因此通常能够产生更紧密的群组。执行完聚类分析后,我们可以使用plot
函数来绘制树状图:
plot(hc_res)
从树状图中可以看出,Iris数据集可以被分成3个主要簇。我们还可以使用cutree
函数将每个样本分配到不同的簇中:
cluster_labels <- cutree(hc_res, k = 3)
其中,k = 3
表示我们期望将数据分为3个簇。可以通过以下方式查看每个样本所属的簇:
head(cluster_labels)
#> [1] 1 1 1 1 1 1
K均值聚类是一种迭代方法,旨在将样本分为k个不同的簇,使得每个簇内部的样本之间的距离最小化。在R中,可以使用kmeans
函数来执行K均值聚类分析。kmeans
函数需要指定要分成的簇数,并且通常需要多次运行以避免收敛于局部最小值。
kmeans_res <- kmeans(iris[, 1:4], centers = 3, nstart = 20)
其中,centers = 3
表示我们期望将数据分为3个簇,nstart = 20
表示我们希
望执行20次随机初始化来避免局部最小值。
K均值聚类分析的输出包括每个样本所属的簇标签和每个簇的中心点。我们可以通过以下方式查看分配到每个簇的样本数量:
table(kmeans_res$cluster)
#>
#> 1 2 3
#> 38 50 62
从结果可以看出,Iris数据集被成功地分成了3个主要簇,每个簇都有相似的特征值。
除了树状图之外,我们还可以使用其他方法来可视化聚类结果。例如,我们可以使用ggplot2包中的函数绘制散点图,并使用不同的颜色表示不同的簇:
library(ggplot2)
iris_clustered <- cbind(iris, cluster_labels)
ggplot(iris_clustered, aes(x = Sepal.Length, y = Petal.Width, color = factor(cluster_labels))) +
geom_point()
从散点图可以看出,不同簇的样本在花萼长度和花瓣宽度之间存在明显的差异。
聚类分析是一种有用的无监督学习方法,可以帮助我们发现数据中隐藏的结构。在R中,我们可以使用层次聚类和K均值聚类等多种方法进行聚类分析。在进行聚类分析之前,我们需要准备好要分析的数据集,并选择合适的聚类算法和参数。最后,我们可以通过树状图、散点图等方式来可视化聚类结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18