
移动平均是一种常见的数据分析技术,可以用来平滑时间序列数据并提取趋势。在Power BI中,DAX语言(Data Analysis Expressions)可以用来实现各种复杂的数据计算和分析,包括移动平均。本文将介绍如何使用DAX在Power BI中有效地计算移动平均。
移动平均是一种统计方法,用于平滑时间序列数据。它通过对连续时间段内的数据进行加权平均来消除噪声和季节性因素,并揭示出潜在的趋势和周期性变化。移动平均通常用于经济学、金融、天气预报等领域,以帮助预测未来趋势和趋势方向。
移动平均计算的核心是定义一个窗口期(Window),表示要计算平均值的数据点数量。例如,如果窗口期为3,那么移动平均将对连续的三个数据点进行平均。随着时间的推移,窗口期不断地向前移动,每次都计算平均值。
以下是一个简单的移动平均公式:
移动平均 = (数值1 + 数值2 + ... + 数值n) / n
其中,n是窗口期大小,数值1至数值n是要计算平均值的数据点。例如,在一个时间序列数据中,要计算过去三个月的移动平均,则n = 3,计算公式为:
移动平均 = (本月销售额 + 上月销售额 + 上上个月销售额) / 3
在Power BI中,可以使用DAX语言来计算移动平均。以下是一个简单的步骤:
步骤1:定义窗口期
首先,需要定义窗口期大小,也就是要计算平均值的数据点数量。可以使用DAX函数CALCULATE和LASTNONBLANK来获取最近n个非空值。例如,要计算最近三个月的移动平均,可以使用以下公式:
Window = CALCULATE(COUNTA(Table[Value]),FILTER(ALL(Table[Date]),Table[Date] > LASTNONBLANK(Table[Date], [Window]-1)-90))
其中,COUNTA函数计算非空值的数量,FILTER函数根据日期筛选数据,LASTNONBLANK函数获取最近一个非空值。
步骤2:计算移动平均
接下来,可以使用DAX函数AVERAGEX对窗口期的数据进行加权平均。例如,在一个名为“Sales”的表格中,有一个名为“Amount”的列,要计算最近三个月的销售额移动平均,可以使用以下公式:
Sales Moving Average = AVERAGEX(FILTER(Sales,Sales[Date] > LASTNONBLANK(Sales[Date], [Window]-1)-90), Sales[Amount])
其中,FILTER函数根据日期筛选数据,并将结果传递给AVERAGEX函数进行加权平均。LASTNONBLANK函数获取最近一个非空值。
在实现移动平均时,还需要考虑以下问题:
(1)窗口期大小的选择:窗口期的大小对移动平均的计算结果有很大影响。通常,窗口期越大,移动平均越平滑,但同时也可能会掩盖一些短期波动性和趋势。因此,在选择窗口期大小时,需要根据具体情况进行权衡和调整。
(2)
数据预处理:在实现移动平均之前,需要对数据进行预处理和清洗,例如去除异常值、缺失值和重复值。这样可以保证计算结果的准确性和可靠性。
(3)时间序列的基本特征:在进行移动平均计算时,还需要考虑时间序列的基本特征,例如季节性、趋势性和周期性等。对于不同类型的时间序列,可能需要采用不同的移动平均方法,例如加权移动平均、指数移动平均和中心移动平均等。
(4)数据可视化:最后,可以使用Power BI的可视化功能将移动平均结果可视化展示出来,以便更好地观察趋势和变化。例如,在一个折线图中同时显示原始数据和移动平均结果,可以更直观地看出趋势线和噪声的关系。
总之,移动平均是一种常见的数据分析技术,可以用来平滑时间序列数据并提取趋势。在Power BI中,通过使用DAX语言,可以有效地实现移动平均计算,并结合数据预处理、时间序列特征和可视化等方面进行综合分析和展示。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11