
树形结构数据是一种常见的数据结构,它由节点和边组成,可以用来表示层次化的关系。在MySQL表中存储树形结构数据,可以使用多种方法,本文将简要介绍几种主要的方法。
我们可以使用以下表格来存储此树形结构:
dept_id | name | parent_id
--------|----------------------|----------
1 | 公司 | NULL
2 | 技术部 | 1
3 | 开发团队 | 2
4 | 测试团队 | 2
5 | 销售部 | 1
6 | 区域销售团队 | 5
7 | 在线销售团队 | 5
其中,dept_id 是节点的唯一标识符,name 是节点名称,parent_id 是父节点的 dept_id。如果一个节点没有父节点,则其 parent_id 值为 NULL。
优点:邻接列表模型是非常简单和直观的模型,易于理解和实现。 缺点:查询复杂度高,特别是递归查询。
dept_id | name | path
--------|----------------------|---------
1 | 公司 | 1
2 | 技术部 | 1/2
3 | 开发团队 | 1/2/3
4 | 测试团队 | 1/2/4
5 | 销售部 | 1/5
6 | 区域销售团队 | 1/5/6
7 | 在线销售团队 | 1/5/7
在此模型中,每个节点都有一个唯一标识符dept_id,名称name和path,该路径包含其所有祖先节点的dept_id,以斜杠分隔。例如,技术部门的路径为1/2,其祖先为公司(dept_id为1)。
优点:查询效率高,对于子节点查询,只需要使用LIKE操作符即可。 缺点:更新节点时,需要更新其后代节点的路径。
dept_id | name | lft | rgt
--------|----------------------|-----|-----
1 | 公司 | 1 | 14
2 | 技术部 | 2 | 7
3 | 开发团队 | 3 | 4
4 | 测试团队 | 5 | 6
5 | 销售部 | 8 | 13
6 | 区域销售团队 | 9 | 10
7 | 在线销售团队 | 11 | 12
在此模型中,
每个节点都有一个唯一标识符dept_id,名称name,以及左右值lft和rgt。左右值的定义是这样的:假设一个节点有子节点,则其左值是其第一个子节点的左值减1,右值是其最后一个子节点的右值加1。如果一个节点没有子节点,则其左值和右值相等。
优点:查询效率高,递归查询时不需要使用JOIN操作,只需要使用BETWEEN操作即可。 缺点:更新节点时,需要更新许多左右值。
dept_id | name | lft | rgt | depth
--------|---------------------|-----|-----|-------
1 | 公司 | 1 | 14 | 0
2 | 技术部 | 2 | 7 | 1
3 | 开发团队 | 3 | 4 | 2
4 | 测试团队 | 5 | 6 | 2
5 | 销售部 | 8 | 13 | 1
6 | 区域销售团队 | 9 | 10 | 2
7 | 在线销售团队 | 11 | 12 | 2
在此模型中,每个节点都有一个唯一标识符dept_id,名称name,以及左右值lft、右值rgt和深度depth。与嵌套集合模型相比,MPTT模型额外提供了深度值,便于快速计算节点的层次关系。
优点:查询效率高,递归查询时不需要使用JOIN操作,只需要使用BETWEEN操作即可。 缺点:更新节点时,需要更新许多左右值。
总结 以上是几种常见的存储树形结构数据的方法。每种方法都有其优点和缺点,具体应用需根据具体场景而定。对于较深的树形结构,MPTT和嵌套集合模型可能比邻接列表和路径枚举模型更适合。但是,在更新节点时,MPTT和嵌套集合模型需要更新大量的值,因此在频繁更新节点的情况下,邻接列表和路径枚举模型可能更好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10