
树形结构数据是一种常见的数据结构,它由节点和边组成,可以用来表示层次化的关系。在MySQL表中存储树形结构数据,可以使用多种方法,本文将简要介绍几种主要的方法。
我们可以使用以下表格来存储此树形结构:
dept_id | name | parent_id
--------|----------------------|----------
1 | 公司 | NULL
2 | 技术部 | 1
3 | 开发团队 | 2
4 | 测试团队 | 2
5 | 销售部 | 1
6 | 区域销售团队 | 5
7 | 在线销售团队 | 5
其中,dept_id 是节点的唯一标识符,name 是节点名称,parent_id 是父节点的 dept_id。如果一个节点没有父节点,则其 parent_id 值为 NULL。
优点:邻接列表模型是非常简单和直观的模型,易于理解和实现。 缺点:查询复杂度高,特别是递归查询。
dept_id | name | path
--------|----------------------|---------
1 | 公司 | 1
2 | 技术部 | 1/2
3 | 开发团队 | 1/2/3
4 | 测试团队 | 1/2/4
5 | 销售部 | 1/5
6 | 区域销售团队 | 1/5/6
7 | 在线销售团队 | 1/5/7
在此模型中,每个节点都有一个唯一标识符dept_id,名称name和path,该路径包含其所有祖先节点的dept_id,以斜杠分隔。例如,技术部门的路径为1/2,其祖先为公司(dept_id为1)。
优点:查询效率高,对于子节点查询,只需要使用LIKE操作符即可。 缺点:更新节点时,需要更新其后代节点的路径。
dept_id | name | lft | rgt
--------|----------------------|-----|-----
1 | 公司 | 1 | 14
2 | 技术部 | 2 | 7
3 | 开发团队 | 3 | 4
4 | 测试团队 | 5 | 6
5 | 销售部 | 8 | 13
6 | 区域销售团队 | 9 | 10
7 | 在线销售团队 | 11 | 12
在此模型中,
每个节点都有一个唯一标识符dept_id,名称name,以及左右值lft和rgt。左右值的定义是这样的:假设一个节点有子节点,则其左值是其第一个子节点的左值减1,右值是其最后一个子节点的右值加1。如果一个节点没有子节点,则其左值和右值相等。
优点:查询效率高,递归查询时不需要使用JOIN操作,只需要使用BETWEEN操作即可。 缺点:更新节点时,需要更新许多左右值。
dept_id | name | lft | rgt | depth
--------|---------------------|-----|-----|-------
1 | 公司 | 1 | 14 | 0
2 | 技术部 | 2 | 7 | 1
3 | 开发团队 | 3 | 4 | 2
4 | 测试团队 | 5 | 6 | 2
5 | 销售部 | 8 | 13 | 1
6 | 区域销售团队 | 9 | 10 | 2
7 | 在线销售团队 | 11 | 12 | 2
在此模型中,每个节点都有一个唯一标识符dept_id,名称name,以及左右值lft、右值rgt和深度depth。与嵌套集合模型相比,MPTT模型额外提供了深度值,便于快速计算节点的层次关系。
优点:查询效率高,递归查询时不需要使用JOIN操作,只需要使用BETWEEN操作即可。 缺点:更新节点时,需要更新许多左右值。
总结 以上是几种常见的存储树形结构数据的方法。每种方法都有其优点和缺点,具体应用需根据具体场景而定。对于较深的树形结构,MPTT和嵌套集合模型可能比邻接列表和路径枚举模型更适合。但是,在更新节点时,MPTT和嵌套集合模型需要更新大量的值,因此在频繁更新节点的情况下,邻接列表和路径枚举模型可能更好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26