
数据科学家和机器学习工程师的角色之间经常存在混淆。尽管他们确实友好地合作,在专门知识和经验方面有一些重叠,但这两种作用的目的完全不同。
从本质上说,我们是在区分科学家和工程师,前者寻求理解他们工作背后的科学知识,后者寻求构建他人可以访问的东西。这两种角色都非常重要,而且在一些公司可以互换--例如,某些组织中的数据科学家可以执行机器学习工程师的工作,反之亦然。
为了使区别变得清晰,我将把区别分为3类;1)职责2)专长3)工资期望。
数据科学家遵循数据科学过程,这也可以称为Blitzstein&Pfister工作流。Blitzstein和Pfister最初创建了这个框架来教哈佛CS109课程的学生如何处理数据科学问题。
数据科学过程包括5个关键阶段
数据科学家完成的大部分工作都是在研究环境中进行的。在这种环境中,数据科学家执行任务来更好地理解数据,以便他们能够构建能够最好地捕捉数据固有模式的模型。一旦他们建立了一个模型,下一步是评估它是否符合项目的预期结果。如果没有,他们将迭代地重复这个过程,直到模型满足期望的结果,然后将其交给机器学习工程师。
机器学习工程师负责创建和维护机器学习基础设施,允许他们将数据科学家构建的模型部署到生产环境中。因此,机器学习工程师通常在开发环境中工作,在开发环境中,他们关心的是复制由数据科学家在研究环境中构建的机器学习管道。并且,它们在生产环境中工作,在生产环境中,模型可以被其他软件系统和/或客户机访问。
本质上,机器学习工程师负责维护ML基础设施,允许他们部署和扩展数据科学家建立的模型。而且,数据科学家是机器学习工程师构建的机器学习基础设施的用户。
人们对这两个角色之间的差异感到困惑的原因是,他们的技能有许多重叠的地方。例如,数据科学家和机器学习工程师都应该具备以下知识;
这些角色之间的主要重叠导致一些组织,特别是较小的组织和初创企业,将这些角色合并为一个角色。因此,有些组织让数据科学家做机器学习工程师的工作,有些组织让机器学习工程师做数据科学家的工作。只会导致更多从业者的困惑。
然而,每个角色所需的专门知识之间存在一些关键差异。
数据科学家通常是非常好的数据故事讲述者。有些人会争辩说,这种特质使他们比机器学习工程师更有创造力。另一个区别是,数据科学家可能会使用PowerBI和Tableau等工具来分享对业务的洞察力,他们不一定需要使用机器学习。
弥补伴侣不足的夫妇通常更强大。当你这样想的时候,前面提到的专业知识可能是机器学习工程师的弱点,他被期望在计算机科学和软件工程方面有很强的基础。机器学习工程师应该了解数据结构和算法,并理解创建可交付软件的基本组件。
话虽如此,对于机器学习工程师来说,很好地掌握另一种编程语言如Java、C++或Julia并不罕见。
确定确切的工资期望是困难的。这两个职位的薪水会因各种因素而异,比如你的经验、你所拥有的资格、你所在的地方和你工作的部门。
各组织也有望提供不同的福利。无论什么角色,你都可以收到加入公司养老金计划、灵活或远程工作、绩效奖金和私人医疗保险的邀请。
联合王国(英国)
美利坚合众国(USA)
总的来说,公平地说,机器学习工程师的平均工资通常高于数据科学家。
尽管数据科学家和机器学习工程师的角色有相似之处,但他们在职责、专业知识和收入方面有很大不同。从我听过的大多数关于这个话题的采访中,许多人说从数据科学家到机器学习工程师的转变比从机器学习工程师到数据科学家的转变要困难得多。这是因为数据科学家通常不精通软件工程和计算机科学基础,这是一个很大的学习曲线。
感谢阅读!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26