
我对数据科学的热情始于大约两年半前。我在做一份与数据科学无关的工作。对我来说,转行是一个很大的挑战,因为我有很多东西要学。
经过两年的学习和奉献,我终于找到了第一份数据科学家的工作。当然,我的学习之旅并没有停止。当我做数据科学家的时候,我学到了很多新东西。
学习部分不会改变。然而,我学什么和怎么学发生了巨大的变化。在本文中,我想详细说明这些变化。如果你正在努力成为一名数据科学家,你可能会经历同样的事情。
重要的是要强调,作为一名数据科学家需要不断学习。数据科学仍在发展,你需要时刻保持新鲜。我认为数据科学还不是一个成熟的领域,所以新的技术和概念经常被引入。
对于一个现实生活中的问题来说,1000万行并不多。
对我来说,最明显的变化是数据的大小。当我自己学习的时候,我正在练习最多有10万行的数据集。我现在认为它是一个小数据集。数据的大小取决于您正在处理的字段和问题。一般来说,1000万行对于一个实际的问题来说并不多。
使用大型数据集有其自身的挑战。首先,我需要学习能够处理此类数据集的新工具。在我开始做数据科学家之前,熊猫对我来说绰绰有余。然而,它并不是一个拥有大规模数据的高效工具。
允许分布式计算的工具更受青睐。Spark是其中最受欢迎的一个。它是一个用于大规模数据处理的分析引擎。Spark允许您将数据和计算分散到集群中,以实现性能的大幅提升。
幸运的是,可以将Spark与Python代码一起使用。PySpark是一个用于Spark的Python API,它结合了Python的简单性和Spark的高效性。
另一个大的变化是从本地环境到云环境。当我学习的时候,我在电脑里做所有的事情(即本地工作)。这对练习和学习来说已经足够了。
然而,一家公司在当地经营的可能性极小。大多数公司都在云中工作。数据存储在云中,计算在云中完成,等等。
为了高效地完成工作,获得对云工具和服务的全面理解是非常重要的。云提供商多种多样,但主要参与者是AWS、Azure、Google云平台。我必须学习如何使用他们的服务和管理存储在云中的数据。
作为一名数据科学家,我经常使用的另一个工具是ISGit。我在学习的时候学会了基本的git命令。但是,在生产环境中工作时就不同了。Git是一个版本控制系统。它维护对代码所做的所有更改的历史记录。
Git允许协作工作。你可能会作为一个团队在项目上工作。因此,即使你在一家小型初创企业工作,git也是一项必备技能。项目是用Git开发和维护的。
Git比它从外部看起来要复杂一点。然而,你在做了几个项目后就习惯了。
工具并不是我学习过程中唯一改变的东西。我处理数据的方式也发生了变化。当您处理一个可随时使用的数据集时,在清理和处理数据方面,您无能为力。例如,在机器学习任务的情况下,您可以在几个简单的步骤后应用模型。
在你的工作中情况会不同。一个项目的很大一部分花费在准备数据上。我不是说只是清理原始数据。这也是重要的一步。然而,探索数据中的底层结构和理解特征之间的关系是至关重要的。
如果您正在处理一个新问题,定义数据需求也将是您的工作。这是另一个需要一套特殊技能的挑战。领域知识是其中必不可少的一部分。
特征工程比机器学习模型的超参数调整重要得多。通过超参数调优可以实现的功能是有限的,因此可以在一定程度上提高性能。另一方面,一个信息特性有可能大大改善一个模型。
在我作为一名数据科学家开始工作之前,我专注于理解机器学习算法和如何调整模型。我现在把大部分时间都花在准备数据上。
我所说的就绪包括许多步骤,例如
统计知识对这些步骤非常重要。因此,我强烈建议提高你在这方面的知识。它会在你的数据科学生涯中帮助你很多。
有大量的资源来学习数据科学。您可以使用它们来提高您在数据科学的任何构建块中的技能。然而,这些资源并不能提供真正的工作经验。没有错。当你找到第一份工作时,让自己准备好学习一套不同的材料。
谢谢你的阅读。如果你有任何反馈请让我知道。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02