京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如果你是一个书呆子般的数据科学家,想要开始作为一个独立(远程)自由数据科学家工作,这篇文章是为你准备的。从现在朝九晚五的工作过渡到远程自由职业是一种解放的经历。最终收益是巨大的,包括:
我叫保·拉巴塔·巴约。我是一个自由数据科学家和ML工程师谁作为一个远程自由职业者在过去2年以上的工作。之前,我曾在一家顶级移动游戏公司Nordeus担任数据科学家。在我周围,我有一群伟大的数据科学家和了不起的数据工程师。当我加入这个团队的时候,他们已经在内部建立了数据分析平台,帮助公司管理一个每天活跃用户超过200万的游戏。我觉得我是另一只在一个成熟的蜂群中运作的蜜蜂。我90%的时间都花在技术上,包括数据分析以改进产品和ML开发以提高效率。10%的时间用于与团队其他成员交流我正在做的事情。
对于像我们这样的书呆子、数据科学家和ML怪人来说,这种分裂感觉很棒。然而,这种舒适有一个代价,我在两个不断的想法中想到了
最终,我辞去了工作,开始从事远程自由数据科学家的工作。这一转变既具有挑战性,也令人难以置信地丰富。在此过程中,我收集了一些知识,并将其浓缩为4个实用技巧,以帮助您加入我的行列,并开始走在另一边。
你的第一个问题是:我在哪里找到我的第一个项目?
互联网上有大量与数据相关的工作。如果你访问像Upwork这样的网站,你可以看到每分钟都有新的职位发布。是的,有很多数据科学工作,这是你每天早上都应该感谢的事情。然而,在那些巨大的网站上也有很多竞争。来自世界各地的自由职业者试图和你在同一个池塘里钓鱼。
你可能会想:
“考虑到我的技能和生活成本,让我们设定一个比我认为合理的低的工资,以增加我找到第一份工作的机会。”
大错。顺便说一句,我犯了两次这个错误。在我的第二个自由职业项目中,我和同一时区的另一位数据工程师一起工作,他的工资是我的两倍多。他第一次做自由职业。无数次我后悔我的聪明的定价。
大多数客户愿意支付更高的费率以减少项目的不确定性。你是一个非常合格的工作,过度的价格折扣也被解释为项目成功的更高的不确定性。此外,请记住,你试图说服另一个人,而不是成本最小化的Android。你需要表现出自信,设定一个比你认为自己价值更低的价格与此相反。
如今,有很多自由职业平台。我已经使用了其中的3个(Upwork,Toptal和Braintrust),但也可以随意探索其他的。
这些平台可分为两类:
大多数客户不是寻找一个全面的数据科学家,而是寻找一个可以解决他们问题的特定配置文件。一个非常了解如何
试图把自己表现为无所不能的终极自由数据科学家是很有诱惑力的,但这不是客户想要的。此外,数据科学是一个巨大的市场。通过缩小你的侧写,你仍然在一个相当大的池塘里钓鱼。记住这一点。
我的第一份自由职业可以粗略地描述为“我们的数据工程师没有一个能在Tableau中构建一个漂亮的仪表板。你能吗?“。这不是我能想到的最令人兴奋的工作,但这是我在以前的工作中做过一千次的事情。我是这方面的专家,这是对客户有价值的。
从专注于你已经是专家的项目开始你的道路。避免冒名顶替综合症,赢得你的第一张支票,建立信心。
兼职工作,甚至每小时工作,你可以学到和以前朝九晚五一样的东西。利用这个机会,在额外的时间里学习新的技能,为下一份合同中你想要工作的下一个领域做准备。
一个典型的错误是这样开始一个提案:
“亲爱的X。我叫Y,是一名数据科学家,在a、B、C和D领域有N年的经验。我有E方面的背景,而且……”
当然可以。你的潜在客户想知道你不可思议的背景。但她不是你爸妈。他想解决这个问题,所以直奔主题。从第一段开始专注于问题,没有序言和只能让她打哈欠的陈述。使用项目符号来列举与问题直接相关的非常具体的事情,并减少认知负荷。还有,把BS控制在最小。你喜欢读别人如何赞美自己吗?你的潜在客户也一样。
自从我开始做自由职业以来,我一直保留着我写的每一份提案。所有为我赢得工作的提案都有这样的结构:
“嗨X!我的名字是Y,最近我构建了N个与您的问题Z直接相关的东西:
我很乐意帮你做这件事。让我们本周打个电话来了解细节。最佳,Y.“
作为一名数据科学家的自由远程工作在智力和经济上都是令人难以置信的回报。如果这些建议能在你的自由职业道路上帮助你,我会感到非常高兴。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22