
自2012年《哈佛商业评论》将数据科学家评为“21世纪最性感的工作”以来,似乎每个人和他们的母亲都在争先恐后地发展他们的数据科学技能。
而且是有充分理由的!根据2021年Robert Half Technology薪资指南,对数据科学家的需求只会继续增加,工资远远超过美国的全国平均水平,美国数据科学家的全国工资中位数为12.9万美元。
但是看过网上的炒作,你真的应该追求一个数据科学家的角色吗?
通过指导数据专业人员,我注意到许多人在没有对数据科学是否真正适合他们做彻底研究的情况下就投身于数据科学。他们最终做了这么多工作来提高技能,结果却得到了一个数据科学的职位,发现他们在工作中很糟糕。
我知道,因为我是其中之一。
早在2012年,我就学习了数据科学技能,只是意识到编码和构建数据解决方案不会给我寻找的成就感和快乐。
归根结底,数据科学实现并不合适。我开始意识到我需要做一些能从我的工作中看到发自内心的积极影响的事情。
那么我做了什么?
我从美国搬到泰国,开始了自己的数据业务--数据狂热。让我告诉你,这曾经很有趣吗!
在您投入多年的时间和精力研究数据科学之前,让我们探讨一些不同的选择。在数据的奇妙世界里,有如此多的职业机会。
为了彻底分析什么角色最适合你,我们将考虑五个不同的因素:
在本文结束时,您将对如何揭开您的最终数据梦想工作有一个坚实的掌握!
首先,我们来分析一下你现在的技能。我发现大多数数据专业人员往往在一个主要领域有严重的削减。这些主要技能往往是:
如果您是面向分析的,您擅长数据可视化、数据故事讲述、仪表板设计--也许您在Tableau或Power BI中构建仪表板和可视化。您还可以使用SQL查询和检索数据。
如果您是面向数据科学的,那么您就有编程经验,Python和R。您对机器学习、预测建模、统计和SQL有深刻的理解。
如果您是面向数据工程的,您将掌握ETL脚本和数据仓库方面的技能。随着技术的提高,您将在分布式计算环境中工作,构建数据管道,维护数据系统,并使用NoSQL。您还将了解如何使用C、C++、C sharp、Java、Scala等语言编写代码,以及使用NoSQL和SQL数据库的工程系统。
如果您是面向数据领导的,那么您擅长领导项目和团队。你将适合担任项目经理、产品经理或涉众管理等角色。您的超能力在于技术项目管理和数据策略领域!
现在是时候考虑一下你的职业目标了。当你展望未来时,你希望在你的数据职业生涯中处于什么位置?
您想成为领导有利可图的数据项目的焦点吗?
是否希望在幕后编码和构建数据解决方案,但拥有更多自主权?
还是您想构建自己的产品并为自己工作,而不必向任何人负责?
因为这也是绝对有可能的!
让我们聊聊性格类型。具体来说,你是内向的还是外向的?
如果你是内向的,你会更乐意做数据实现和编码工作。您会喜欢深入了解细节,而不必为管理客户和团队成员而分心。
如果你外向,那么你将在数据领导类型的角色中处于最佳状态。您将能够使用您的人际技能来管理团队和项目,而不是自己编写解决方案!
当我们谈论优先级时,我指的是你职业生涯的哪个赛季。
根据你的季节,你可能有不同的优先事项和需求。我喜欢通过马斯洛的需求层次来思考这个问题。
马斯洛的需求层次理论指出,所有人都有自我实现的愿望,但为了让我们优先考虑内心的满足,我们需要首先照顾我们最基本的需求。。
需要是:
重要的是他们按这个顺序被照顾。
那么,你会问,这和你的数据生涯有什么关系?
嗯,在我们职业生涯的开始,我们很多人都背负着助学贷款,刚从学校毕业,我们通常会考虑照顾我们最基本的需求(生理和安全)。我们的首要任务是在我们的头上建立一个屋顶,并获得一个稳定的财务地方。
但是一旦我们在事业上有所进步,我们的需求就会改变。我们开始想要得到认可,荣誉,晋升--换句话说,我们的尊重需要。最后,一旦我们得到了金钱和赞美,我们往往会发现自己在寻找更多。这是作为一个数据专业人员寻求真正实现和更大影响的阶段。
问问你自己:你现在最渴望从你的数据职业生涯中得到什么?是钱吗?是自由和荣誉吗?你想产生影响吗?
例如,数据实施工作通常是确保健康收入的最快途径。成为一名数据企业家或领导者可能需要更多的前期工作,但长期的成就感可能更强!
当谈到数据时,想想你最感兴趣的是什么。
我所在社区的大多数人都被四个领域之一所吸引:
问问你自己--对你来说什么是最有趣的?什么给你最多的能量?
如果是编码,您肯定想要研究数据实现角色。但如果这是管理项目、项目和产品,或者与业务进行咨询,那么考虑数据领导角色。如果创新更多的是你的果酱,那么你可能有创业的骨头!
世界是你拥有数据技能的牡蛎。没有必要仅仅因为数据科学是人们谈论最多的技术职业之一,就把自己限制在数据科学上。通过深入了解你的个性、激情、目标和技能,你将能够找到一份不仅报酬丰厚,而且从长远来看会给你带来真正成就感的工作。
如果你喜欢了解不同的数据职业道路,你可以追求,你会喜欢我的免费数据超级英雄测验!你将发现你内心的数据超级英雄类型,并获得个性化的数据职业建议,直接与你独特的数据技能、个性和激情的组合相一致。
在这里进行测验
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10