京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我只想说,你是选择数据科学还是数据工程,最终应该取决于你的兴趣和你的激情所在。然而,如果你坐在篱笆上,不确定该选择哪一个,因为他们是同样感兴趣的,那么继续阅读!
数据科学一时成为热门话题,但一个新的丛林之王已经到来--数据工程师。在本文中,我将与您分享几个原因,为什么您可能希望考虑使用数据工程而不是数据科学。
请注意,这是一篇固执己见的文章,并从中获取您想要的内容。话虽如此,我希望你喜欢!
我们都听过“垃圾进,垃圾出”这句话,但直到现在,公司才开始真正理解这句话的含义。机器学习和深度学习可能是强大的,但只有在非常特殊的情况下。除了需要大量的数据和ML和DL的实际使用之外,公司还需要自下而上地满足数据需求层次结构。
就像我们在社交需求(即关系需求)之前有物理需求(即食物和水)一样,公司需要满足几个通常属于数据工程伞的需求。请注意数据科学,特别是机器学习和深度学习,是最重要的东西。
简单地说,没有数据工程就没有数据科学。数据工程是一个成功的数据驱动公司的基础。
正如我之前所说的,公司正在意识到对数据工程师的需求。因此,目前对数据工程师的需求越来越大,这是有证据的。
根据ToIntegrated Query的数据科学面试报告,2019年至2020年,数据科学面试数量仅增长了10%,而同期数据工程面试数量增长了40%!
此外,Mihail Eric对Y-Combinator的职位发布进行了一项分析,发现的数据工程角色比的数据科学家角色多70%。
你可能会想,“当然增长要高得多,但就绝对数字而言呢?”
我冒昧地从Indeuts、Monster和SimplyHired上搜索了所有数据科学家和数据工程师的职位,发现这两个职位列表的数量都差不多!
总共有16577份数据科学家工作清单和16262份数据工程师工作清单。
在更成熟的公司中,工作通常是分开的,这样数据科学家可以专注于数据科学工作,而数据工程师可以专注于数据工程工作。
但大多数公司通常不是这样。我想说,大多数公司实际上都要求他们的数据科学家了解一些数据工程技能。
许多数据科学家最终需要数据工程技能。
作为一名数据科学家,了解数据工程技能也是非常有益的,我将举一个例子:如果您是一名不懂SQL的业务分析师,那么每次想要收集见解时,您都必须要求数据分析师查询信息,这在您的工作流程中造成了瓶颈。类似地,如果您是一名数据科学家,没有数据工程师的基本知识,那么您肯定会不得不依赖其他人来修复ETL管道或清理数据,而不是自己完成。
在我看来,作为一名数据工程师学习数据科学比作为一名数据科学家学习数据工程技能容易得多。为什么?数据科学有更多的可用资源,有许多工具和库被构建来使数据科学变得更容易。
因此,如果你正在开始你的职业生涯,我个人认为花时间学习数据工程比数据科学更值得,因为你有更多的时间可以投入。当你从事一份全职工作,进入职业生涯几年后,你可能会发现你没有能力或精力在学习上投入那么多时间。所以从这个角度来看,我认为最好先学比较难的领域。
我不只是在谈论工作机会,而是通过新的工具和方法来创新和使数据工程变得更容易的机会。
当数据科学最初被大肆宣传时,人们发现了学习数据科学的几个障碍,比如数据建模和模型部署。后来出现了像PyCaret和Gradio这样的公司来解决这些问题。
目前,我们正处于数据工程的初始阶段,我预见到许多使数据工程变得更容易的机会。
虽然这是一篇固执己见的文章,但我希望这能让您了解为什么想成为一名数据工程师。我想重申,你是选择数据科学还是数据工程,最终应该取决于你的兴趣和你的激情所在。我一如既往地祝你在你的努力中好运!
不知道接下来要读什么?我为您挑选了另一篇文章:
4个你不应该成为数据科学家的理由
为什么数据科学工作不适合你
和另一个!
想成为一名数据科学家吗?不要从机器学习开始。
有抱负的数据科学家最大的误解
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05