京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者Renato Boemer,Renato Boemer
所以,你研究数据科学已经有一段时间了,现在你期待着下一步:找到你的第一份工作,成为一名数据科学家。然而,如果这不是你的第一份工作,那么这可能是你第一次申请一个与你之前的职业无关的角色。那么,为什么不从别人的错误中吸取教训呢?
在我关于将职业生涯转向DataScience的帖子中,我从DataQuest的在线学习开始。然后,今年早些时候,我做出了我职业生涯中最好的决定之一:我报名参加了Le Wagon训练营--我还为此写了《使徒行者》。尽管训练营本质上是密集的,但任何职业转变中最困难的部分是找到你的“第一份工作”。
最近,我加入了一家名为NextDoore的公司,是一家总部位于英国伦敦的数据科学家。但我找到第一份数据科学家工作的过程绝非易事。我已经申请了50多个角色,做了几次面试,其中一些是纯粹的技术或包括现场编码。在此期间,我学到了很多,我想分享五个可以帮助你找到第一份数据科学家工作的技巧:
这似乎很明显,但不幸的是,识别你不知道的东西并不容易。更糟糕的是,你可能认为你知道,但你不知道。让我举一个例子:在训练营期间,我使用SCIKIT-Learn的logistic回归创建了几个机器学习模型。我几乎直观地调优了惩罚参数,特别是在L1和L2之间,它们分别指套索和脊。到目前为止还好。
在我的第一次面试中,我决定加入这些概念来展示一些知识,但事与愿违。当我试图解释这种差异时,我意识到我知道如何应用它们,但我不明白背后的概念(更不用说数学了)。不用说,我没有得到那份工作。在这里,我的建议是深入研究一些项目,直到您逐行了解您的代码。试着在模拟面试中向其他同事解释为什么你选择了每个模型和参数。在去面试之前你会注意到许多可以填补的空白。这样做,你也会听起来流利地使用正确的术语,并感到自信地解释你的工作。
如果你真的想在你的头几个月里找到一份数据科学家的工作,那么你应该向那些有很多经验的人学习。老师和助教是很好的信息来源,所以每天都和他们说话。问一个关于招聘流程、面试以及如何管理与招聘人员的对话的问题,以了解更多关于公司和角色的信息。
另外,我和另外两个训练营的校友一起创建了一个slack频道。在这个频道中,我们分享我们的简历、求职信、面试和测试的反馈。我们讨论了面试问题和答案,我们总是分享我们的代码和笔记本来帮助对方。不要害怕分享你的工作,而是学会一起工作。毕竟,你的目标是一样的:尽快成为一名数据科学家。
你没有数据科学家的“商业经验”,这应该会让任何招聘人员感到惊讶。只要看一下你的简历,任何人都能看出你正在寻找你的第一份工作。也就是说,不要试图把自己推销为专家数据科学家(来自Kaggle projects),这不是你现阶段最有价值的技能。
在我得到Nextdoor的工作机会后,人力资源经理给了我八次面试的反馈。它可以概括为一个“赞成”和一个“反对”:我渴望学习,但我没有编码经验。我所学到的是,招聘经理正在寻找那些热衷于学习新事物并跟上行业的人。
所以,表现出你是一个好奇的人,你喜欢学习数据相关主题的过程,你每天都在练习编码。展示你对数据、计算机科学、统计学领域的热情。您对持续学习的动机和承诺将(而且应该)超过您当前的编码技能。
在没有经历过的情况下知道自己想要什么有点抽象。你怎么知道你想成为一名数据科学家,而不是机器学习工程师、数据工程师或数据分析师?起初,所有这些职位看起来都很相似,也许你会接受其中任何一个作为你的第一份工作。嗯,我一开始就是这么想的,这是个错误。
求职阶段的关键区别在于面试的准备。如果你知道你想要一份数据科学家的工作,请确保你确切地知道数据科学家是做什么的。当你研究的时候,一些细微差别会开始凸显出来。例如,数据科学家倾向于不使用数据分析师使用的Tableau或数据工程师使用的Docker。您不必开发广泛的数据科学知识,相反,您可以提高您在新工作中所需的深度。一些例子包括Pandas、Numpy、Scikit-learn线性和logistic回归、matplotlib和Seaborn。如果你掌握了这些,我相信你很快就会得到一份数据科学家的工作。
我怎么强调都不为过:请习惯被招聘人员、招聘经理和公司拒绝。在寻找第一份数据科学家工作的过程开始时,你的积极性很高,没有什么能阻止你。
然而,随着几周时间的流逝,拒绝信不断出现在你的收件箱里,你的动力水平不可避免地崩溃了。有很多数据科学家的角色,以及越来越多的候选人。此外,招聘过程很慢,但从候选人的角度来看要慢得多。我在新工作两个月后收到了拒绝的电子邮件。不管怎样,被拒绝是很自然的。
一个让你的动机保持高昂的想法是与一群正在经历同样过程的朋友分享。就像我之前说过的,与其他校友建立一个松弛的渠道,分享你的挫折。我相信他们也在经历同样的事情。这一点很重要,因为您会注意到您在编码方面并不是垃圾,这只是时间、一致性和努力的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09