
作者Renato Boemer,Renato Boemer
所以,你研究数据科学已经有一段时间了,现在你期待着下一步:找到你的第一份工作,成为一名数据科学家。然而,如果这不是你的第一份工作,那么这可能是你第一次申请一个与你之前的职业无关的角色。那么,为什么不从别人的错误中吸取教训呢?
在我关于将职业生涯转向DataScience的帖子中,我从DataQuest的在线学习开始。然后,今年早些时候,我做出了我职业生涯中最好的决定之一:我报名参加了Le Wagon训练营--我还为此写了《使徒行者》。尽管训练营本质上是密集的,但任何职业转变中最困难的部分是找到你的“第一份工作”。
最近,我加入了一家名为NextDoore的公司,是一家总部位于英国伦敦的数据科学家。但我找到第一份数据科学家工作的过程绝非易事。我已经申请了50多个角色,做了几次面试,其中一些是纯粹的技术或包括现场编码。在此期间,我学到了很多,我想分享五个可以帮助你找到第一份数据科学家工作的技巧:
这似乎很明显,但不幸的是,识别你不知道的东西并不容易。更糟糕的是,你可能认为你知道,但你不知道。让我举一个例子:在训练营期间,我使用SCIKIT-Learn的logistic回归创建了几个机器学习模型。我几乎直观地调优了惩罚参数,特别是在L1和L2之间,它们分别指套索和脊。到目前为止还好。
在我的第一次面试中,我决定加入这些概念来展示一些知识,但事与愿违。当我试图解释这种差异时,我意识到我知道如何应用它们,但我不明白背后的概念(更不用说数学了)。不用说,我没有得到那份工作。在这里,我的建议是深入研究一些项目,直到您逐行了解您的代码。试着在模拟面试中向其他同事解释为什么你选择了每个模型和参数。在去面试之前你会注意到许多可以填补的空白。这样做,你也会听起来流利地使用正确的术语,并感到自信地解释你的工作。
如果你真的想在你的头几个月里找到一份数据科学家的工作,那么你应该向那些有很多经验的人学习。老师和助教是很好的信息来源,所以每天都和他们说话。问一个关于招聘流程、面试以及如何管理与招聘人员的对话的问题,以了解更多关于公司和角色的信息。
另外,我和另外两个训练营的校友一起创建了一个slack频道。在这个频道中,我们分享我们的简历、求职信、面试和测试的反馈。我们讨论了面试问题和答案,我们总是分享我们的代码和笔记本来帮助对方。不要害怕分享你的工作,而是学会一起工作。毕竟,你的目标是一样的:尽快成为一名数据科学家。
你没有数据科学家的“商业经验”,这应该会让任何招聘人员感到惊讶。只要看一下你的简历,任何人都能看出你正在寻找你的第一份工作。也就是说,不要试图把自己推销为专家数据科学家(来自Kaggle projects),这不是你现阶段最有价值的技能。
在我得到Nextdoor的工作机会后,人力资源经理给了我八次面试的反馈。它可以概括为一个“赞成”和一个“反对”:我渴望学习,但我没有编码经验。我所学到的是,招聘经理正在寻找那些热衷于学习新事物并跟上行业的人。
所以,表现出你是一个好奇的人,你喜欢学习数据相关主题的过程,你每天都在练习编码。展示你对数据、计算机科学、统计学领域的热情。您对持续学习的动机和承诺将(而且应该)超过您当前的编码技能。
在没有经历过的情况下知道自己想要什么有点抽象。你怎么知道你想成为一名数据科学家,而不是机器学习工程师、数据工程师或数据分析师?起初,所有这些职位看起来都很相似,也许你会接受其中任何一个作为你的第一份工作。嗯,我一开始就是这么想的,这是个错误。
求职阶段的关键区别在于面试的准备。如果你知道你想要一份数据科学家的工作,请确保你确切地知道数据科学家是做什么的。当你研究的时候,一些细微差别会开始凸显出来。例如,数据科学家倾向于不使用数据分析师使用的Tableau或数据工程师使用的Docker。您不必开发广泛的数据科学知识,相反,您可以提高您在新工作中所需的深度。一些例子包括Pandas、Numpy、Scikit-learn线性和logistic回归、matplotlib和Seaborn。如果你掌握了这些,我相信你很快就会得到一份数据科学家的工作。
我怎么强调都不为过:请习惯被招聘人员、招聘经理和公司拒绝。在寻找第一份数据科学家工作的过程开始时,你的积极性很高,没有什么能阻止你。
然而,随着几周时间的流逝,拒绝信不断出现在你的收件箱里,你的动力水平不可避免地崩溃了。有很多数据科学家的角色,以及越来越多的候选人。此外,招聘过程很慢,但从候选人的角度来看要慢得多。我在新工作两个月后收到了拒绝的电子邮件。不管怎样,被拒绝是很自然的。
一个让你的动机保持高昂的想法是与一群正在经历同样过程的朋友分享。就像我之前说过的,与其他校友建立一个松弛的渠道,分享你的挫折。我相信他们也在经历同样的事情。这一点很重要,因为您会注意到您在编码方面并不是垃圾,这只是时间、一致性和努力的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09