
我最近读到一篇文章,将数据科学描述为一个过饱和的领域。文章预测ML工程师将在未来几年取代数据科学家。
根据这篇文章的作者,大多数公司致力于用数据科学解决非常相似的业务问题。因此,数据科学家没有必要提出解决问题的新方法。
作者接着说,在大多数数据驱动的组织中,为了解决问题,只需要基本的数据科学技能。这个角色很容易被机器学习工程师取代--一个拥有数据科学算法基础知识的人,他也拥有部署ML模型的知识。
在过去的一年里,我读过许多类似的文章。
其中一些人表示,数据科学家的角色将被AutoML之类的工具所取代,而另一些人则将数据科学称为“垂死的领域”,很快将被数据工程和ML操作之类的角色所超越。
作为一个与数据行业不同支柱密切合作的人,我想就这个主题提供我的观点,并回答以下问题:
大多数组织中的数据科学工作流程非常相似。许多公司雇佣数据科学家来解决类似的商业问题。大多数建立的模型都不需要你想出新颖的解决方案。
在这些组织中,您将采用的解决数据驱动问题的大多数方法很可能以前已经使用过,您可以从网上可用的大量资源中获得灵感。
此外,AutoML和DataRobot等自动化工具的兴起使预测建模变得更加容易。
我在一些业务用例中使用DataRobot,它是一个很好的工具。它迭代许多值,并为您的模型选择最佳参数,以确保最终得到尽可能高精度的模型。
因此,如果预测模型随着时间的推移变得更加容易,为什么公司仍然需要数据科学家?为什么他们不直接使用自动化工具和ML工程师的组合来管理他们的整个数据科学工作流呢?
答案很简单:
首先,数据科学从来不是关于重新发明轮子或构建高度复杂的算法。
数据科学家的角色是用数据为组织增加价值。在大多数公司中,只有很小一部分涉及到构建ML算法。
其次,总会有自动化工具无法解决的问题。这些工具有一组固定的算法,您可以从中选择,如果您确实发现了一个需要结合使用多种方法来解决的问题,您将需要手动完成。
虽然这种情况并不经常发生,但仍然会发生--作为一个组织,你需要雇佣足够熟练的人来做到这一点。此外,像DataRobot这样的工具不能进行数据预处理,也不能进行建模之前的任何繁重工作。
作为一个为初创企业和大公司创建数据驱动解决方案的人,这种情况与处理Kaggle数据集的情况非常不同。
没有固定的问题。通常,您有一个数据集,然后给您一个业务问题。如何利用客户数据来最大限度地提高公司的销售额取决于您。
这意味着数据科学家需要的不仅仅是技术或建模技能。您将需要将数据与手头的问题连接起来。您需要决定可以优化解决方案的外部数据源。
数据预处理是漫长而艰苦的,不仅因为它需要很强的编程技能,还因为您需要试验不同的变量及其与手头问题的相关性。
您需要将模型精确度与转换率之类的指标联系起来。
模型构建并不总是这个过程的一部分。有时,一个简单的计算可能足以执行像客户排名这样的任务。只有一些问题需要你做出预测。
归根结底,数据科学家为组织提供的价值在于他们将数据应用于现实世界用例的能力。无论是建立细分模型、推荐系统,还是评估客户潜力,除非结果是可解释的,否则对组织没有真正的好处。
只要一个数据科学家能够在数据的帮助下解决问题,并弥合技术和业务技能之间的差距,这个角色就会继续存在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01