
作者:俊欣
来源:关于数据分析与可视化
时间过得真快,2021年差不多还有10天就要和大家说再见了,大家今年过得怎么样?有什么收获或者遗憾呢?
今天我们来分析一下2021年的基金市场,分析一下今年表现最好的那些基金有什么特征?作为理财小白的你,如何在2022年如何科学理性地投资从而避免被当做韭菜收割呢?
首先对于基金,可以大致分为:货币型基金、债券型基金、混合型基金和股票型基金等等
主要投资于货币市场,如短期国债、回购、央行票据、银行存款等等,风险基本没有。其主要特征是“本金无忧、活期便利、定期收益、每日计收益、按月分红利”。
类似的像余额宝就是货币型基金,而我们一般以七日年化收益率来衡量与评价这种基金
指的是以国债、金融债等固定收益类金融工具为主要投资对象的基金,因为其投资的产品收益比较稳定,又被称为是“固定收益基金”,主要的特点有
顾名思义主要是投资于股票市场的基金,其中股票仓位不能低于80%,当然根据股票的种类可以分成优先股基金和普通股基金
混合型基金是指投资于股票、债券以及货币市场工具的基金,根据股票、债券投资比例以及投资策略的不同,混合型基金又可以分为偏股型基金、偏债型基金、配置型基金等多种类型。
相比较与前三者,混合型基金实现投资的多元化,无需去分别购买风格不同的股票型、债券型以及货币基金。
下面我们来看一下小编筛选出来的表现优异的基金们有什么样的特征?
此次数据的来源是来自于【蛋卷基金】,通过ajax异步交互来传输数据,有专门的接口,我们分析得到翻页的规律主要是通过改变当中的page参数,而type参数则是控制其基金的种类,就是上面提到的股票型、债券型和混合型基金等等
数据抓取的代码如下
@retry(stop=stop_after_attempt(7)) def send_requests(url): response = requests.get(url=url, headers=headers, timeout=10) return response.text # 数据提取与整理 def parse_json(response_data): fund_name_list = [] fund_code_list = [] fund_yield_list = [] fund_value_list = [] response_j = json.loads(response_data) funds_list = response_j.get("data").get("items") for fund in funds_list: fund_name = fund.get("fd_name") fund_name_list.append(fund_name) fund_code = fund.get("fd_code") fund_code_list.append(fund_code) fund_yield = fund.get("yield") fund_yield_list.append(fund_yield) fund_value = fund.get("unit_nav") fund_value_list.append(fund_value) return fund_name_list, fund_code_list, fund_yield_list, fund_value_list
抓取完成后,数据是这样的:
今年以来收益率前十名的股票型基金是:
收益率的分布情况如下图所示:
而混合型基金收益率前十名的分别是:
收益率分布情况如下图所示:
让小编略感到惊讶的则是债券型基金,它的收益率也并不比股票型基金要差,排在前十位的收益率分别是
它的收益率分布情况如下图所示:
下面我们来看一下这些表现优异的基金的资产规模状况,
对于股票型基金,收益率Top200的基金中,其资产规模大多在6亿元以下,大多都是在1亿元-3亿元之间
而对于混合型基金而言,结论也是相似,资产规模大多在1亿元-5亿元之间
究竟是买新基金好还是买老基金好呢?
小编筛选了收益率较高的前100名的股票型基金,针对它们的创立时间进行了汇总分析,发现成立时间大多都是在2018年以及2015年-2016年之间,距今差不多已有3-6年的历史,
而相对于混合型基金而言,收益率前30的基金上市时间大多在2015-2017年,距今也差不多有4-6年的时间
从上图中同时我们也可以看出老基金的收益率总体上还是要比新基金的收益率要更高一些的
每支基金的前十大持仓股也是十分重要的信息,因此我们来看一下哪些股票被重仓了。
我们筛选了收益率前30的股票型基金和混合型基金,将这些被重仓的股票,它们的持股比例做一个累加,挑选出持仓股累计占比排名前30的股票种类。
在股票型基金当中,而宁德时代是被较为关注的股票之一
而混合型基金的则是
买基金主要还是要看基金经理人,查看一下他们以往的成绩,因此我们来看一下这些基金掌舵人的表现如何?
我们首先来看混合型基金的情况,收益率前200的基金中,小编根据基金经理持有基金的平均收益率为标准,选取排名前10的经理,我们可以看到“韩广哲”以及“韩创”这两位基金经理人的收益率能够达到65%左右
而对于股票型基金而言,基金经理人“曹春林”所管理的基金收益率大约也有55%左右
我们来看一下这些明星基金经理人所管理的基金,混合型基金的明星经理人,他们分别管理的基金是
而股票型基金的明星经理人所管理的基金则是
最后的最后小编还是需要提醒各位读者朋友:投资有风险,理财也需要谨慎。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19