京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
今天来分享一个高效率的数据清洗的方法,毕竟我们平常在工作和生活当中经常会遇到需要去处理杂七杂八的数据集,有一些数据集中有缺失值、有些数据集中有极值、重复值等等。这次用到的数据集样本在文末有获取的办法。
我们首先导入所需要用到的库,并且读取数据
import pandas as pd import numpy as np
df = pd.read_csv("DirectMarketing.csv")
我们先来大致地看一下数据集中各个特征值的情况,通过info()这个方法
df.info()
我们看到上面的“History”这一列,只有697条数据不是空值,那就意味着还有另外3条数据是空值,与之对应的方式有将含有缺失值的数据删掉,或者将缺失值的部分替换为是中位数或者是平均数,
# 将缺失值给移除掉 df.dropna(axis = 0, inplace = True)
要是数据集中存在大量的缺失值,只是简简单单地移除掉怕是会影响到数据的完整性,如果是数值类型的特征值,就用用平均值或者是中位数来替换,如果是离散类型的缺失值,就用众数来替换
def fill_missing_values_num(df, col_name): val = df[col_name].median()
df[col_name].fillna(val, inplace = True) return df
def fill_missing_values_cate(df, col_name): val = df[col_name].value_counts().index.tolist()[0]
df[col_name].fillna(val, inplace = True) return df
而可能存在重复值的部分,pandas当中有drop_ducplicates()方法来进行处理
df.drop_duplicates(inplace = True)
最后我们封装成一个函数,对于缺失值的处理小编这里选择用中位数填充的方式来处理
def fill_missing_values_and_drop_duplicates(df, col_name): val = df[col_name].value_counts().index.tolist()[0]
df[col_name].fillna(val, inplace = True) return df.drop_duplicates()
经常使用pandas的人可能都有这种体验,它经常会将数据集中的变量类型直接变成object,这里我们可以直接使用“convert_dtypes”来进行批量的转换,它会自动推断数据原来的类型,并实现转换,并且打印出来里面各列的数据类型,封装成一个函数
def convert_dtypes(df): print(df.dtypes) return df.convert_dtypes()
对于极值的检测有多种方式,例如我们可以通过箱型图的方式来查看
sample = [11, 500, 20, 24, 400, 25, 10, 21, 13, 8, 15, 10] plt.boxplot(sample, vert=False) plt.title("箱型图来检测异常值",fontproperties="SimHei") plt.xlabel('样本数据',fontproperties="SimHei")
我们可以通过箱型图来明显的看出当中有两个异常值,也就是400和500这两个,箱型图由最大值、上四分位数(Q3)、中位数(Q2)、下四分位数和最小值五个统计量组成,其中Q1和Q3之间的间距称为是四分位间距(interquartile range,IQR),而通常若是样本中的数据大于Q3+1.5IQR和小于Q1-1.5IQR定义为异常值
当然了除此之外,还可以通过z-score的方法来检测,Z-score是以标准差为单位去度量某个数据偏离平均数的距离,计算公式为
我们用python来实现一下当中的步骤
outliers = [] def detect_outliers_zscore(data, threshold): mean = np.mean(data) std = np.std(data) for i in data: z_score = (i-mean)/std if (np.abs(z_score) > threshold): outliers.append(i) return outliers# Driver code
而对待异常值的方式,首先最直接的就是将异常值给去掉,我们检测到异常值所在的行数,然后删掉该行,当然当数据集当中的异常值数量很多的时候,移除掉必然会影响数据集的完整性,从而影响建模最后的效果
def remove_outliers1(df, col_name): low = np.quantile(df[col_name], 0.05)
high = np.quantile(df[col_name], 0.95) return df[df[col_name].between(low, high, inclusive=True)]
其次我们可以将异常值替换成其他的值,例如上面箱型图提到的上四分位数或者是下四分位数
def remove_outliers2(df, col_name): low_num = np.quantile(df[col_name], 0.05) high_num = np.quantile(df[col_name], 0.95) df.loc[df[col_name] > high_num, col_name] = high_num df.loc[df[col_name] < low_num , col_name] = low_num return df
因此回到上面用到的样本数据集,我们将之前数据清洗的函数统统整合起来,用pipe()的方法来串联起来,形成一个数据清洗的标准模板
def fill_missing_values_and_drop_duplicates(df, col_name): val = df[col_name].value_counts().index.tolist()[0]
df[col_name].fillna(val, inplace = True) return df.drop_duplicates() def remove_outliers2(df, col_name): low_num = np.quantile(df[col_name], 0.05)
high_num = np.quantile(df[col_name], 0.95)
df.loc[df[col_name] > float(high_num), col_name] = high_num return df def convert_dtypes(df): print(df.dtypes) return df.convert_dtypes()
df_cleaned = (df.pipe(fill_missing_values_and_drop_duplicates, 'History').
pipe(remove_outliers2, 'Salary').
pipe(convert_dtypes))
所以我们之后再数据清洗的过程当中,可以将这种程序化的清洗步骤封装成一个个函数,然后用pipe()串联起来,用在每一个数据分析的项目当中,更快地提高我们工作和分析的效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29