
作者:星安果
来源:AirPython
大家好,我是安果!
最近打算做一批日历给亲朋好友,但是从 iPhone上导出的照片格式是 HEIC 格式,而商家的在线制作网站不支持这种图片格式
PS:HEIC 是苹果采用的新的默认图片格式,它能在不损失图片画质的情况下,减少图片大小
有很多在线网站支持图片批量转换,但是安全隐私又没法得到保证;如果使用 PS 等软件去一张张转换,浪费时间的同时效率太低
本篇文章将使用 Python 批量实现 HEIC 图片文件的格式转换
首先,我们安装 pyheif 依赖包
Linux 和 Mac OS 可以通过下面链接选择合适的方式进行安装
https://pypi.org/project/pyheif/
如果是 Windows,我们只能下载 whl 依赖文件,使用 pip 命令进行安装
注意:我们需要根据系统及Python 版本选择对应的文件进行安装
# 比如,本机是win10+64位 + Python3.7
# 通过下面链接下载文件:pyheif‑0.6.1‑cp37‑cp37m‑win_amd64.whl
https://www.lfd.uci.edu/~gohlke/pythonlibs/#pyheif
# 然后进行虚拟环境
# 使用pip3命令安装whl文件
pip3 install pyheif‑0.6.1‑cp37‑cp37m‑win_amd64.whl
然后,安装 PIL 依赖,用于图片处理
# 安装依赖
pip3 install Pillow
首先,遍历源文件夹及子文件夹,获取所有 HEIC 格式(不区分大小写)的图片
import pathlib
import os
def get_all_heic_imgs():
"""
获取所有heic格式的图片
:return:
"""
# heif_image_paths = glob.glob(r"{}/*.heic".format(source_path))
# 满足条件的文件列表
filelist = []
for root, dirnames, filenames in os.walk(source_path):
for filename in filenames:
# filename:文件名、root:文件对应的目录
# 获取文件后缀名
file_end = pathlib.Path(filename).suffix
# 文件名(不带后缀)
file_name = pathlib.Path(filename).name.split(".")[-2]
if file_end in ['.heic', '.HEIC']:
# 文件的完整目录
# file_path = os.path.join(root, filename)
filelist.append({
"filename": file_name,
"filepath": os.path.join(root, filename)
})
return filelist
然后,遍历文件列表,使用 pyheif 读取文件,使用PIL 转为二进制图片,以JPG 格式保存到目标文件夹下
import pyheif
from PIL import Image
# 读取文件
img = pyheif.read(filepath)
img_bytes = Image.frombytes(mode=img.mode, size=img.size, data=img.data)
# 文件保存完整目录
target_file_path = '{}/{}_{}.jpg'.format(target_path, filename, generate_random_num(6))
# 保存
img_bytes.save(target_file_path, format="jpeg")
由于图片数目很多,图片读取、图片保存都是耗时的 IO 操作,最后对程序进行改造,利用多线程加快图片转换
另外,图片可能会存在文件名重名,最后保存的文件名追加了一个随机的字符串
import threading
def generate_random_num(count):
"""
产生一段随机的字符串
:param count:
:return:
"""
return ''.join(random.sample('abcdefghijklmnopqrstuvwxyz', count))
def convert_heic_to_jpg(file, semaphore):
"""
heic格式转jpg
:param files:
:return:
"""
semaphore.acquire()
...
#文件操作
# 释放
semaphore.release()
if __name__ == '__main__':
...
# 定义信号量,并发处理文件IO
semaphore = threading.BoundedSemaphore(20)
for file in files:
t = threading.Thread(target=convert_heic_to_jpg, args=(file, semaphore))
t.start()
通过上面的操作就可以快速将 HEIC 文件批量转换为 JPG 文件,当然如果想转为其他图片,比如:PNG,只需要更改 PIL 保存图片的格式即可
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08