京公网安备 11010802034615号
经营许可证编号:京B2-20210330
嗨喽,各位同学又到了公布CDA数据分析师认证考试LEVEL II的模拟试题时间了,今天给大家带来的是模拟试题(一)中的51-55题。
不过,在出题前,要公布上一期LEVEL II中46-50题的答案,大家一起来看!
46、C
47、C
48、D
49、D
50、C
你答对了吗?
51.对于主成分分析来说,主要关注的是( )
A.行变量和列变量两者的相关性
B.变量之间的相关性
C.行变量之间的相似性
D.维度的含义
52.主成分是常用的数据挖掘算法,下面对于主成分分析叙述错误的是()
A.主成分分析是一种降维的方法
B.借助主成分分析算法可以进行图像特征采样
C.是通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量
D.主成分分析设法将原来变量重新组合成一组新的、彼此相关的的几个综合变量
53.实际应用中,关于主成分数量K的取值,下列说法错误的是( )
A.可以基于碎石图进行判断
C.通常要求 K 个主成分的累积方差比超过 80%
D.各个主成分之间的方向夹角需要尽可能的小
54.在实际应用中,若研究单个指标的方差对结果的影响,在做主成分析的时候应该选择使用( )
A.协方差矩阵
B.相关系数矩阵
C.关联矩阵
D.其余三者皆可
A.依次递增
B.依次递减
C.大小相等
D.先变大后变小
认真答题哦,我们将在下一期公布正确答案,敬请期待。
Level Ⅰ:1200 RMB
Level Ⅱ:1700 RMB
Level Ⅲ:2000 RMB
Level Ⅰ:随报随考。
Level Ⅱ:随报随考。
Level Ⅲ:一年四届(3、6、9、12月的最后一个周六),每届考前一个月截止该届报名。
Level Ⅰ+Ⅱ:中国内地30+省市,70+城市,250+考场。考生可选择就近考场预约考试。
Level Ⅲ:中国内地30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州。
点击CDA题库链接,获取免费版CDA题库入口,祝考试顺利,快速拿证!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20