京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:Mika
数据:真达
如果说冬天对北方人来说只是一个季节,而对南方人来说是一场“渡劫”。北方的冷是干冷,物理攻击,多穿一点就好了。而且室内有暖气,在室内可以穿着短袖吃冰棍。
而南方的冷是湿冷,魔法攻击,穿再多没有用。而且室内还没暖气,各种段子也是层出不穷:
“你在北方的暖气里四季如春,我在南方的寒冬下冻成冰棍儿”
“北方人过冬靠的是暖气,南方人过冬靠的是一身正气”
“我是一只来自北方的狼,来到南方却被冻成了狗”
一到冬天南方人除了靠一身浩然正气,空调、电热毯、油汀、电暖气等各类花式取暖电器都得安排上。
内贸批发平台1688上获取的数据显示,进入11月以来,暖气片在南方城市的销量比去年同期增长了300%,平台上取暖小家电品类整体营业额同比增幅达到200%,其中发热垫的同比增速甚至高达600%。
据显示,暖气片和暖气设备销量贡献最大的国内客户,主要都是来自长江沿线城市,以江浙沪、安徽、湖南、湖北、重庆、四川等地居多,一时间“南方取暖设备被买爆”话题登上了微博热搜,让人不禁感叹南方人过个冬天实在是太难了。
用Python分析全网取暖器数据
我们使用Python获取了淘宝网搜索关键词暖气片、取暖器、壁挂炉的商品数据,并进行了数据分析。
1.读取数据
首先导入获取的数据。
# 导入工具包 import numpy as np import pandas as pd from pyecharts.charts import Bar, Pie, Map, Page from pyecharts import options as opts import jieba
# 读取数据 df_all = pd.read_csv('../data/导出数据.csv')
df_all.head()
df_all.shape (13212, 7)
2.数据清洗和整理
此处我们需要对数据集进行数据清洗以便后续分析和可视化,主要工作内容如下:
代码实现如下:
df = df_all.copy() # 去除重复值 df.drop_duplicates(inplace=True)
df.shape
(6849, 7)
# 筛选记录 df = df[df['purchase_num'].str.contains('人付款')] # goods_price列处理 df['goods_price'] = df['goods_price'].str.extract('(d+.{0,1}d*)') df['goods_price'] = df['goods_price'].astype('float') # purchase_num列处理 df['num'] = df['purchase_num'].str.extract('(d+.{0,1}d*)') df['num'] = df['num'].astype('float') df['unit'] = [10000 if '万' in i else 1 for i in df['purchase_num']] # 计算销量 df['purchase_num'] = df['num'] * df['unit'] # 计算销售额 df['sales_volume'] = df['goods_price'] * df['purchase_num'] # 提取省份字段 df['province_name'] = df['location'].astype('str').str.split(' ').apply(lambda x:x[0]) # 删除多余的列 df.drop(['num', 'unit', 'detail_url'], axis=1, inplace=True) # 重置索引 df = df.reset_index(drop=True) df.head()
3.数据可视化
此处我们对店铺销量、产地分布、商品价格等方面进行可视化分析:
市场上的取暖器种类较多,有暖风机、小太阳、电热膜、油汀、快热炉、踢脚线等取暖设备,我们首先看到这些取暖器的标题词云。
商品标题词云图
可以看到"取暖器" "暖风机" "暖气片"都是出现的高频词。在特征方面"家用" "节能" "速热"都十分常见。
接着,看到店铺月销量排名Top10。
店铺月销量排名Top10
可以看到店铺销量前十,凯瑞莱旗舰店位居第一。其后春尚电器专营店和苏宁易购分别是第二第三名。排在前十的还有美的、tcl等品牌。
# 计算top10店铺 shop_top10 = df.groupby('shop_name')['purchase_num'].sum().sort_values(ascending=False).head(10)
全国各省份产地销量排名Top10
这些取暖器的产地都在哪儿呢?经过分析发现,浙江是生产取暖器的头号大省,在产地销量排名中一骑绝尘位居第一。之后排在第二位的是广东。湖南、江苏、山东分别位居第三第四第五名。
# 计算销量top10 province_top10 = df.groupby('province_name')['purchase_num'].sum().sort_values(ascending=False).head(10)
不同价格区间的商品数量占比
取暖器都卖多少钱呢?经过分析发现,100元以下的商品是最多占比高达34.76%。其次是200-500元的商品,占比22.09%。
不同价格区间的销量占比
与此同时,在销量方面,价格在100元以下和100-200元之间的取暖产品也是销量最好的,全网销售量分别占比37.49%和35.92%。
结语
有了各式各样的取暖器,南方冬天就好过了吗?并不,空调开久了干,踢脚线耗电高,油汀等电暖气更适合局部取暖,大空间制热效果差。
虽然近年来也有很多南方家庭选择全房装地暖的,然而电暖用起来一个月电费就高达2、3千,这可能就是北方一个冬天的暖气费用了。这么对比起来,似乎还是开空调和取暖器实在啊。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28