
作者:丁点helper
来源: 丁点帮你
前面2篇R语言相关的文章以泰坦尼克号的数据为例,介绍了描述性统计中用到的计算操作,以及柱形图的绘制操作。今天我们继续聊聊如何在R中绘制直方图和散点图。
绘制直方图
仍使用titanic.csv这个数据。
# 导入数据 titanic <- read.csv("//Users//Desktop//titanic.csv",header = TRUE) names(titanic) # 查看titanic中的变量名 [1] "pclass" "survived" "sex" "age" "sibsp" "parch"
假设我们想对age这个变量绘制直方图,了解泰坦尼克号上乘客的年龄分布,可用hist()这个函数:
hist(titanic$age)
上图中直方图标题、颜色、坐标轴名称均可调整:
hist(titanic$age, col='orange', main='Passenger Age', lwd=2, xlab='Age (years)')
其中,col、main、xlab这三个命令在之前的文章中讲过;lwd为线条宽度命令,取值须为整数,默认值为1。
绘制散点图
接下来我们看看如何绘制散点图。还是老规矩,要用到的数据可通过以下方式下载:
文件名: wb.csv
链接: https://pan.baidu.com/s/1gOAuccW5i8cIW5HaPHnm8A
密码: nc5u
这是世界银行(word bank)对部分国家社会、经济、环境指标的统计数据。
# 导入数据 wb <- read.csv("//Users//Desktop//wb.csv",header = TRUE) names(wb) # 查看wb中的变量名 [1] "Country" "Code" "Population" "Rural" "GNI" "IncomeTop10" "Imports" [8] "Exports" "Military" "Cell" "Fertility66" "Fertility16" "Measles" "InfMort" [15] "LifeExp" "PM2.5" "Diesel" "CO2" "EnergyUse" "FossilPct" "Forest94" [22] "Forest14" "Deforestation" "GunTotal" "GunHomicide" "GunSuicide" "GunUnint" "GunUndet" [29] "GunsPer100"
这里我们先关注第五个变量『GNI』,其意义是人均国民收入。GNI是Gross National Income的缩写;再关注第18个变量『CO2』,其意义是人均二氧化碳排放量。
一项研究想观察人均国民收入和人均二氧化碳排放量之间存在何种关系,由于二者均为数值型变量,我们可以用散点图的方式直观感受一下:
plot(wb$GNI,wb$CO2, main="CO2 vs. GNI (both per capita)", xlab="Gni per capita", ylab="CO2 per capita", col="red", pch=19) # col命令的取值还可以是数字,本例中red对应的数字是2 plot(wb$GNI,wb$CO2, main="CO2 vs. GNI (both per capita)", xlab="Gni per capita", ylab="CO2 per capita", col=2, pch=19)
上面两条代码的运行结果是一样的。wb$GNI 和 wb$CO2 分别为散点图的横轴和纵轴;pch表示点的形状,取值为整数,本例中用到的19表示圆点。
下面用一个图片来给大家介绍1-20的数字分别代表什么颜色、什么形状:
plot(c(1:20),rep(1,20),col=c(1:20),pch=c(1:20),cex=2)
cex表示对图中的文本或符号放大多少倍,大家可自行在R中操作,感受cex=1时图像的变化。
举个例子,col=15:黄色;pch=15:方块。在R中,可选的颜色还有很多,大家可以查看下图中的颜色名称,绘图时在col命令中输入即可。
手机用户可横屏查看效果更佳,告别大红大蓝秋裤色就靠它了~
今天就学到这里啦,之后还有更多R绘图课程来和大家见面!
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29