京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:丁点helper
来源: 丁点帮你
前面2篇R语言相关的文章以泰坦尼克号的数据为例,介绍了描述性统计中用到的计算操作,以及柱形图的绘制操作。今天我们继续聊聊如何在R中绘制直方图和散点图。
绘制直方图
仍使用titanic.csv这个数据。
# 导入数据
titanic <- read.csv("//Users//Desktop//titanic.csv",header = TRUE)
names(titanic) # 查看titanic中的变量名
[1] "pclass" "survived" "sex" "age" "sibsp" "parch"
假设我们想对age这个变量绘制直方图,了解泰坦尼克号上乘客的年龄分布,可用hist()这个函数:
hist(titanic$age)
上图中直方图标题、颜色、坐标轴名称均可调整:
hist(titanic$age, col='orange', main='Passenger Age',
lwd=2, xlab='Age (years)')
其中,col、main、xlab这三个命令在之前的文章中讲过;lwd为线条宽度命令,取值须为整数,默认值为1。
绘制散点图
接下来我们看看如何绘制散点图。还是老规矩,要用到的数据可通过以下方式下载:
文件名: wb.csv
链接: https://pan.baidu.com/s/1gOAuccW5i8cIW5HaPHnm8A
密码: nc5u
这是世界银行(word bank)对部分国家社会、经济、环境指标的统计数据。
# 导入数据
wb <- read.csv("//Users//Desktop//wb.csv",header = TRUE)
names(wb) # 查看wb中的变量名
[1] "Country" "Code" "Population" "Rural" "GNI" "IncomeTop10" "Imports"
[8] "Exports" "Military" "Cell" "Fertility66" "Fertility16" "Measles" "InfMort"
[15] "LifeExp" "PM2.5" "Diesel" "CO2" "EnergyUse" "FossilPct" "Forest94"
[22] "Forest14" "Deforestation" "GunTotal" "GunHomicide" "GunSuicide" "GunUnint" "GunUndet"
[29] "GunsPer100"
这里我们先关注第五个变量『GNI』,其意义是人均国民收入。GNI是Gross National Income的缩写;再关注第18个变量『CO2』,其意义是人均二氧化碳排放量。
一项研究想观察人均国民收入和人均二氧化碳排放量之间存在何种关系,由于二者均为数值型变量,我们可以用散点图的方式直观感受一下:
plot(wb$GNI,wb$CO2, main="CO2 vs. GNI (both per capita)",
xlab="Gni per capita", ylab="CO2 per capita",
col="red", pch=19)
# col命令的取值还可以是数字,本例中red对应的数字是2
plot(wb$GNI,wb$CO2, main="CO2 vs. GNI (both per capita)",
xlab="Gni per capita", ylab="CO2 per capita",
col=2, pch=19)
上面两条代码的运行结果是一样的。wb$GNI 和 wb$CO2 分别为散点图的横轴和纵轴;pch表示点的形状,取值为整数,本例中用到的19表示圆点。
下面用一个图片来给大家介绍1-20的数字分别代表什么颜色、什么形状:
plot(c(1:20),rep(1,20),col=c(1:20),pch=c(1:20),cex=2)
cex表示对图中的文本或符号放大多少倍,大家可自行在R中操作,感受cex=1时图像的变化。
举个例子,col=15:黄色;pch=15:方块。在R中,可选的颜色还有很多,大家可以查看下图中的颜色名称,绘图时在col命令中输入即可。
手机用户可横屏查看效果更佳,告别大红大蓝秋裤色就靠它了~
今天就学到这里啦,之后还有更多R绘图课程来和大家见面!
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31