京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一、前言
计算和互联网技术的广泛运用极大地提高了数据的可获得性,使大量的数据得以收集、保存和整理。与此同时,计量经济学在整个经济学体系中的地位日益提升。在顶级经济学杂志的论文中,应用计量论文已占到了相当高的比例。正是在这些背景之下,面板数据受到了越来越多经济研究人员的欢迎,面板数据的应用研究亦成为热点。
面板数据成为研究的热点一方面自然是因为本身优秀的特质;另一方面也归因于面板数据在应用过程中仍有许多问题和未知领域需要去探索。在面板数据回归分析中,如果存在异方差,最小二乘估计出的系数尽管是线性、无偏和一致的,但不是有效的,甚至不是渐进有效的。这些影响将导致参数估计和假设检验失效。
二、异方差产生的原因
异方差产生的因素很多,比如模型中省略了某些重要的解释变量,模型形式设定不准确,样本数据中存在的测量误差,异常值的出现,截面个体之间的差异等。面板数据是具有时序和截面双重性质的数据形式,异方差不仅会出现在时间序列上还将出现在横截面序列上,所以面板数据模型中的异方差问题要比单纯的时间序列或截面数据模型要复杂得多。
三、面板数据异方差处理方法
实际上,在处理面板数据线性回归时,主要考虑固定效应模型与pooled OLS的异方差问题。因为随机效应模型使用GLS估计,本身就已经控制了异方差。
Huber (1967)、Eicker (1967) 和 White (1980)提出了异方差—稳健方差矩阵估计,该方法能够在考虑异方差情况下求出稳健标准误。利用异方差稳健标准误对回归系数进行t检验和F检验都是渐近有效的。这就意味着,如果出现异方差,仍然可以使用OLS回归,只需结合使用稳健标准误即可。在STATA中,异方差—稳健标准误可以在“reg”或者“xtreg”语句后,加选择性命令“robust”即可得到。但是这一方法有一个假设的前提:残差项是独立分布的。
Parks(1967)提出了可行广义最小二乘法(FGLS),一般用于随机效应模型估计。基本思路是:先估计固定效应模型,得到〖个体误差项方差σ〗_ε^2 的估计值〖 σ ?〗_ε^2。继而估计混合OLS模型,利用其残差和第一步得到的〖 σ ?〗_ε^2,即可估计出总体误差项的方差σ ?_μ^2 。FGLS 估计量在N→∞或T→∞或二者都成立的情况下,都是渐进有效的。在STATA中,运用可行广义最小二乘法的命令是:xtgls。FGLS 要比“OLS+稳健标准误”处理异方差的方法更为有效,特别是在大样本的情况下。但是在更一般的情况下,“OLS+稳健标准误”比FGLS稳健,因为前者不需要估计条件方差函数的形式。
Beck and Katz (1995) 认为FGLS产生的标准误过小。为解决这一影响,他们提出了面板校正标准误(PCSE)来估计OLS的系数。在STATA中,带PCSE的pooled OLS可以由xtpcse获得。但是PCSE仅为T→∞时渐进有效的。当T/N 较小时,这一方法则不够精确。
Driscoll& Kraay (1998)提出了在N→∞的情况下渐近有效的非参数协方差矩阵估计方法,能够获得控制异方差和自相关的一致标准误,克服了PCSE在N→∞情况下不够准确的问题。在STATA中,获得Driscoll&Kraay 标准误的命令是xtscc。需要说明的是,xtscc只适用于估计pooled OLS和固定效应(组内)回归模型。
四、结论
通过以上比较分析可以看出,仅仅从方法上去比较处理异方差的方式孰优孰劣是不够的,还要结合样本情况、模型设置以及个人的追求偏好(如追求稳健或追求有效的偏好)进行选择。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第四章 战略与业务数据分析考点43:战略数据分析基础考点44:表格结构数据的使用考点45:输入数据和资源 ...
2026-02-22CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10