
Cox回归分析及其SPSS操作方法概述
我们先回顾一下生存分析的KM法和寿命表法(回复数字26和27可以查看KM法的详细内容),其共同点是只能分析一种因素与生存率的关系,Log-Rank法也是比较一个因素两种水平间的生存差别,如果生存率的影响因素有很多,我们怎么避免其它混杂因素的影响呢?我们可以使用回归分析方法,但如果使用logistic回归,也是只能观察影响因素与结局的关联,没有考虑结局发生的时间因素。Cox回归可以解决这个问题。Cox回归一般模型假设为
其中h(t,X)是在时刻t的风险函数又可称瞬时死亡率,h(0,t)是基线风险率,其它与logistic回归模型相同。βj大于0则xj越大,病人死亡风险越大,βj小于0则xj越大,病人死亡风险越小,βj等于0则xj越与死亡率没有影响。Exp(β)为危险比(HR)或相对危险度(RR)。
下面以一个例子说明在SPSS中作Cox回归如何操作。
我们想观察乳腺癌的生存率及其影响因素,收集了1207例病例并进行了随访。观察的因素包括年龄(age)、病理肿瘤大小(pathsize)、腋窝淋巴结个数(lnpos)、组织学分级(histgrad)、雌激素状态(er)、孕激素状态(pr)和淋巴结转移(ln_yesno)等。time为随访时间,status为生存状态。
在SPSS菜单里点击“分析”-“生存函数”-“Cox回归”,在弹出的对话框里,将”time”和” status”分别选入时间和状态对话框,点击“定义事件”,填写“1”,将不同的影响因素选入协变量框中,方法可以选“向后:LR”(各种方法差别不大,可以自由选择)。
如果有多分类变量需要设置哑变量,可以点击右上角“分类”,将要设置哑变量的变量选入右边框中。并可以选择以第一个或者最后一个作为参照。
在右上角点击“选项”,可以选择“CI用于exp(B)”,用于计算HR的95%置信区间。
最后点击确定可看到Cox回归分析结果。
结果中第一个表给出病例纳入情况,如下图,数据共1207个病例,但最后一共纳入590例,其中40例出现事件(即死亡),另外617例因为有缺失值被排除。从中可以看出,数据质量不太好,有缺失值的病例占一半以上且有观察终点的病例只有40例。
下面的表中是哑变量编码情况,histgrad中“1”被编码为“0”“0”,即histgrad中“2”“3”均以“1”为参照。
下面再看主要的结果,即“方程中的变量”表。本表列出了多个步骤,在步骤1中,全部我们纳入的变量都进入分析,从前往后分别是模型系数(B)、系数标准误(SE)、Wald检验值,自由度(df)、p值,HR值(Exp(B))及其置信区间。接下来看步骤2,其相对于步骤1少了一个变量er。即步骤2中删除了步骤1中的P值最大的变量。同理依次删除p值最最大的变量。
下面我们看最后一步,即步骤5.经过筛选,只剩下三个变量,即认为这三个变量对生存率的影响,其中病理肿瘤大小对应的HR为1.566,大于1,即认为病理肿瘤越大,生存时间越短;同理腋窝淋巴结个数越多,生存时间越短;孕激素状态对应的HR为0.511,小于1,即有孕激素时生存时间越长。
需要说明的是Cox回归分析是比例风险模型,即模型假设在任一时间点两组的危险比是相同的。如下图所示:
而下图所示则不符合比例风险模型,不能作简单Cox回归。如果想作回归分析,可以咨询相关统计专家或查看专业书籍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08