
上海57期CDA数据分析就业班学员
毕业院校:德州学院
专业:光电应用技术
入职信息:环海学院,数据分析师,上海
来cda是前同事介绍,因为他就是从cda出去的,我为什么来呢,是因为之前的公司是创业公司,不幸解散了,所以又得重新找工作,那时候是元旦,一直到过年我都没有找工作,年后回来,想了想还是找和之前工作一样的吗,复制粘贴复制粘贴工作,完全不想去找,我就想起了,和我同部门的那个同事,数据分析,会的简直不是比我高一个lever,Python爬虫,机器建模,以前没了解到的那些好像他都会,然后就准备找他问问在哪里学的,他给我推荐了cda,问完就去校区报名了。
正式学习中,发现就连Excel也是能玩出花来的,功能非常强大,三个月的时间说实话很紧很紧,因为要学的东西实在是太多,完全消化也是很难的,有些公式知道就可以,不需要完全都背下来记住,记住关键字,主要用作什么,以后需要再去网上找都可以,学东西一定要抓住重点,全部抓的话,费精力,重要的也记不好,在课上一定要跟老师走,回放是用来温习的,不要以为有回放,课上就不认真听了,有些不懂的可以当场问,效果会更好。
课下一定要复习和预习,因为一天全是满课,讲的知识量很大,我们同学大多都是转行,之前并没有类似学习的经历,所以很多东西并不能当堂就理解并记住,晚上在校区上自习的话有些老师还在教室,可以及时问,及时解答,也可以问老师一些,目前行业内的问题,老师大多数也在其他公司就职或者有自己的公司,所以对目前行业内的见解和看法对于我们之后的就职也有很大帮助。
预习当然也很重要,报名后cda会给一些预习视频,是往期老师上课的一些视频,课前也串一串老师要讲的知识点,对哪些不明白的记一下,课上着重听。
关于就业,大家最关心的就是薪资了,我的薪资相对于其他同学,应该算是最低的,因为当时找工作时家人和我自己的想法就是先入行,薪资没那么重要,当然这样想现在认为也不是完全错,薪资当然越高越好了,看到高薪的同学也替他们开心的,我本人认为应聘时最重要的就是自信,面试前多做一些准备,把之前的工作经历试试结合数据分析应该怎样做,我来的这家公司虽然工资低,但这个氛围我是很喜欢的,因为我的直属领导是个很爱学习的人,并带着大家一起学,我刚入职的时候,他们正在学习数据分析,是整个部门包括策划,设计,运营,开发都在学数据分析,那时候的学习快接近尾声了,我就参加了后面的两到三课,每周会对这个学习做一个总结分享,最后毕业,他们以全优毕业,算是很不错的了,当时就是这种学习氛围感觉很喜欢,所以对高薪同学也会有些羡慕,但我觉得自己的运气也还算不错。
业务这方面,必须要了解,要不然分析出来的就只是简单的数据,我每天早上会去的早一些,和策划,开发聊一聊公司的业务,哪些因素会影响数据波动,一些客观因素也许对某一天的数据波动非常重要但可能是我们想不到的,刚开始看看以前的数据报表,对某周某月的数据变化,大致了解一下,感觉异常的就多问问同事,在别人不忙的情况下最好。
对于数据分析,本人认为很重要的就是数据分析思维,对于维度的拆解,在工作中遇到的问题大多也是按这种,还有就是不要有太大压力,因为大多的数据分析并不是你的一个分析结果直接导致公司的收益增减,起初先是做一个监控,有一定数据之后,可以做分群,比如薅羊毛客户,风险客户之类可能我到的是一个小公司,是这种模式吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23