京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
编辑:Mika
作者:杨迅 CDA Level Ⅰ 持证人
大家好,我叫杨迅,是一名CDA Level Ⅰ 持证人,今天很高兴跟大家分享一下我的CDA认证备考经验。
我毕业后就职国内某头部保险集团任 IT 产品经理,因负责数仓和指标体系的搭建,故需对数据统计分析相关内容有较深入的掌握。在了解到 CDA 后,基于“既然学了不如顺便拿个证”的心态报了名。
总的来说 Level Ⅰ 的内容是比较基础的,我认为所有产品经理至少需要掌握 Level Ⅰ 所要求的数据分析能力(不见得必须考证),对于工作中用户调研、行为数据分析、结构性思维等方面都会有所帮助。若从事专业的数据分析工作,还需要进一步掌握更高级别的数据分析技能。
我主要是工作中正好需要用到相关的知识,所以平时工作本身也是对相关内容的学习和实践。
另外下班后我会找时间把推荐的几本书都好好的看看,重要的部分梳理一下笔记。
只要根据自己的时间,把推荐的书都看完,把 CDA 提供的一系列配套课程学完,应对考试完全是没问题的,其实重点还是要看有没有真的学到东西。
说实话,Level Ⅰ 的难度并不是很大,如果要挑个重点的话我觉得是『业务分析方法与模型』部分。这部分占比最重,同时知识点也最分散,不像统计学和数据库一样都是十分成熟的知识体系,所以这部分在学校也不可能体系化的学习过。
在准备这部分时需要根据考纲大范围的搜寻相关资料和知识点,然后进行整理,尽可能自己搭建核心知识体系。
在这里,仅就考纲内容推荐大家几本相关度较高的书吧。
第一本是《统计学(第七版)》贾俊平、何晓群、金勇进编著,里面概率分布、统计抽样、参数估计、假设检验、列联分析、方差分析、线性回归等都是考纲中统计分析部分重点考核的内容。这本书是『十二五』普通高等教育本科教材,如果是理工科的上学时应该都学过,忘记的找出来复习一下就行了。
第二本是《数据库系统概论(第五版)》王珊、萨师煊编著,这本也是大学教材,比较全面地介绍了数据库应用相关的基础知识,涵盖了 Level Ⅰ 考试中与数据库相关的全部知识。
第三本是《数据仓库工具箱(第三版)——维度建模权威指南》Ralph Kimball 和 Margy Ross 编著,若仅为考试,该书可重点看前三章,详细介绍了数据仓库的发展历程和维度建模技术的使用方法,对应考纲中多维度数据分析部分的内容。第三章以后是维度建模技术在各个行业的具体实践应用,对从事数仓等相关领域工作的人会有很大帮助。
最后推荐几本 CDA 考纲中也推荐过的书,《数据决策-企业数据的管理、分析与应用》《活用数据-驱动业务的数据分析实战》《数据化管理-洞悉零售及电子商务运营》。这三本书对应考纲中业务分析方法、分析报告、Excel 使用技巧等内容,其中《活用数据》这本也涉及到部分统计学内容,不过其中存在几处公式错误,大家注意甄别,有疑问要以《统计学(第七版)》内容为准。《活用数据》中还用到了 SPSS 工具,感兴趣的可以看《SPSS 统计分析基础/高级教程(第三版)》,也是大学教材。
最后想跟大家说的是, 获得证书只是对现阶段自己水平的一个肯定,将来还是要坚持不断学习的。
多读书多学习,读书就像吃饭,虽然难以马上看到收益,但是想要长远的走下去,就离不开一日三餐。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05