
很高兴有这个机会,受邀参加CDA校友分享会。
几个月的学习和求职的经历,也让我感慨颇多,有一肚子话想跟咱们老师、同学交流,如果有些我个人的成功、失败之处,也希望对大家有一定的借鉴。我的起点比较低,如果我都能成功,相信其他人肯定也能成功。
来CDA之前
我今年22岁,大专学历。我的专业是高尔夫运动管理,可能大伙都没听过!是不是很高大上,天天接触有钱人?
我们的专业课,包括高尔夫专项技术、规则礼仪、产业概论、俱乐部管理、赛事管理、营销实务等。我的高尔夫球也打得不错哦,如果有校友对高尔夫运动感兴趣,可以找我私聊,免费指导哈!
一看开设的课程,你就能发现高尔夫运动管理专业就是为这种高端体育项目量身打造的,所以我们对口的就业方向比较窄。目前面对国内经济形势,还有疫情影响,现在就业压力很大。虽然也能找到一些跟高尔夫球运动、高端体育场馆等相关的工作,但整体收入不高、也不稳定,多是以销售为主,跟业绩挂钩。
这也是我来CDA之前比较苦恼的地方。想要趁着年轻再学点技术,心里有底。而且大专嘛,确实学历比较低,很多工作连面试机会都没有。
学在CDA
我来CDA学习,选择的是面授班,这样能天天接触到老师和同学,不懂就当面请教。班主任还特意给我引荐了两位助教,阿涛老师经常在晚上给我开小灶,在这里也表达一下感谢。
助教冲哥也跟我讲解了该怎么学习、怎么看视频,又推荐了一些基础的入门书籍,给我增加了不少信心。后来还跟我聊起他年轻时候在高考受挫、大学奋斗、工作后辞职考研等经历,让我备受鼓舞,年轻的时候就该折腾,没有什么好怕的。
开始几天确实心里有些发怵,之前对数据分析接触少、基础也比较差,更是不知道将来应该选择什么就业方向。班主任露露了解到我的情况后,安排负责就业的佟老师跟我聊了几个小时,帮着分析我的特点、个性特长应该往哪个方向发展,也让我对数据分析这个行业和就业市场有了一个清晰的认识。
上课这两个月我觉得自己还挺拼的,几乎掉了一层皮。主要是基础太差了,再加上刚接触这块,现在我感觉基础还没有那么扎实,而且越学越觉得有好多内容要去恶补。好在现在慢慢入门,知道该怎么学了。
求职之路
咱们就业老师每周组织的线上老学员求职及工作分享会,我几乎一期不落,不过一直潜水、很少发言。在这个分享会上我获得了很多启发和指点,也希望咱们这个活动一直办下去。
找工作的经历比较痛苦,因为我的专业和学历都没有竞争力,所以投简历阶段基本就被淘汰了。那段时间我打了一阵零工,也跟咱们CDA的老师和同学保持着联系。一边挣钱养活自己,一边继续学习,给自己鼓劲。
后来听就业佟老师说有一个咱们CDA的老学员所在的公司招人,帮我安排了一个面试的机会。面试前几天,我让助教阿涛老师帮我把知识点系统地串了一下,还请佟老师给我针对性地做了一个模拟面试,最后又帮我优化了一遍简历。
坦白的说,面试的结果一般般,但我还是很荣幸地拿到了这次工作的机会。我在想他录取我的原因是什么呢?除了有校友这层关系,也许是我比较上进,人比较踏实,而且还比较年轻,可塑性强吧。
再回首
回首我的逆袭之路,我觉得下面三点非常重要:
1、 一定要找靠谱的培训机构
比如像CDA这样即专业、负责,又有温度的大家庭,能够让我们安全、快速地转换新的人生赛道。
2、 一定不要放弃自己
记得有碗毒鸡汤是这么说的:条条大路通罗马,而有人就出生在罗马。确实,人分三六九等,每个人的起点都不一样,如果我们就此认命,像现在流行的所谓“躺平”,那真是不用活了。我觉得年轻的时候还是要拼一把,这样老了才不后悔!
3、 一定要抓住每一次机会
比如我来CDA后一直跟老师和同学保持着联系,这是我进入数据分析行业的人脉和领路人啊。
比如求职的时候,很多同学说不考虑第三方外包公司、不考虑太初级的数据治理打标签、取数之类的工作,关键是你有这个资本挑三拣四吗?先把工作拿下来、先入行、先把自己的技术搞牛了再说嘛。
当然,现在的我还远没有成功,只能说开了一个好头,还要继续努力,不断夯实基础,争取在数据分析师这条路上越走越稳!
再次感谢CDA,还有我们校友大家庭,祝咱们都越来越好!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05