京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我本科是统计学,毕业于西安工程大学,这是一所双非公办本科,非985,非211,在大学里,我曾经不止一次畅想过自己未来的第一份工作,但我无论如何也不会想到我能加入字节跳动这么伟大的公司。我为何能成功入职字节跳动,我觉得参加CDA培训,真的是我求职时候一个很大的助力跳板。
跟大多数同学一样,在大四的时候,我也对未来的工作比较迷茫,不知道走向何方。但是恰巧在这个时候,我遇到了CDA的校园宣讲,我觉得数据分析师的职业前景不错,我很有必要系统学习一下数据分析师需要掌握的知识和技能。我们统计学专业在学校学的东西都比较传统一点。像数据分析界比较流行的Python之类的,学校教的很浅。数据分析师的工作虽然跟我的统计学专业比较对口,但是我觉得我在学校学到的数据分析相关技能跟市场实际需要是有脱节的,这也是大多数大学专业的通病吧,于是我决定参加CDA的数据分析就业培训班。
学习真的是一件比较苦的事情。我记得我当时的班级编号是210628期就业班。那会儿,我是在西安分校区上课学习的,班里同一期的,西安总共有5名同学,全国大概有70多名同学。我们西安校区上的是直播课,是老师在总校面授并同时直播给分校学员的那种形式,也是在教室里上课,感觉上很接近于现场面授的形式。每天上午9点30~12点,下午时2点~5:30上课学习。按照Excel,Power BI,统计学,SQL,Python等5个知识模块进行学习。每一天都是干货满满,知识密集度很大。直播课结束后,还要做课后作业。每一两个周还要做一次阶段测试。而且助教对我们的管理也比较严格。我们有时候上课忍不住闲聊,打游戏,助教老师都会立即阻止我们,为此都惹得我们的助教小哥哥发飙了,但是也多亏有助教老师的监督,以我的自制力,如果没人监督,我很容易就放飞自我。三个月多月的课程,真的是硬着头皮挺下来的。特别是后面学到的Python机器学习方面的知识,真的很深奥,这些我在学校里都从来没有接触过。我和小伙伴们努力的研究,努力的吸收。最后三个多月的刻苦学习终于结束时,我还和小伙伴们一起K歌聚餐,放松了一下,真是既收获了知识也收获了友谊。
最后阶段的就业指导也非常重要。感谢就业老师对我的简历指导。我经过二十多次面试,最后有两个offer,一家是国家电网数据分析但是是外包公司。另一家是字节跳动。字节跳动简直真的太棒了,我果断选择去字节跳动。
我谈一谈我的字节跳动面试经历,给大家参考一下。我在BOSS直聘上给字节跳动投递了简历,第二天就有HR联系我,然后加了我的微信,他给我发了一份数据分析师的电子版面试题,让我24小时内发给他。面试题不算太难,考察了统计学,SQL,Python以及一些机器学习的知识,凭借我在CDA学到的知识和我探索解决问题的能力,我很快就把这些题全部都做好了,当天下午我就把答案整理好后发给了HR,然后过了2天,HR通知我1周后去公司参加二面,二面的话,第1,是面试官让先做自我介绍,这个大家事先准备好,建议时间控制在1分钟内,第2,是描述一个曾经做过的数据分析有关的项目,我就说了一个以前学过的数据分析项目,边说面试官会根据你说的内容进行提问,问的非常详细和下钻,所以准备这一块的时候,一定要把项目提前熟悉透彻,一定要提前模拟一下面试官可能会问的问题并构思好自己如何回答。说完这一块之后,面试官还问了如果我现在再来做这个项目,我会在哪些方面进行改善,这一点最好也提前构思一下。这一块大概说了二十多分钟。第3,问了我日常生活哪些软件用的比较多,我说了抖音和酷狗音乐,然后针对抖音提问了有没有什么觉得可以改进的地方,说了希望可以添加中视频板块。然后面试官继续追问,假设抖音添加了这个功能,如何衡量这个功能是否能为抖音带来一些收益。要明确阐述用什么指标来衡量,如何计算这些指标,怎么样确定新增用户或者收益是由于上线该功能而带来的。这一块大概说了20分钟。最后还有三面,三面问了很多统计学问题和一些机器学习算法问题,统计学我本身就比较熟悉,算法方面我在培训中也学习了很多,所以我都回答了,虽然有些问题回答的不太理想,我还以为最后要挂了,不过真的很幸运,最终我通过了字节跳动的面试,拿到了offer。
机会总是给那些有准备的人准备的。回想过去,从我开始学习CDA数据分析,当时是20年的6月,到现在转眼已经快两年了。再过几个月,我在字节跳动也要快两年了。我真的非常感谢自己那三个多月的刻苦学习。我能进入字节跳动,除了我自己通过参加CDA培训掌握数据分析技能以外,当然也有字节跳动在20年大力扩招的原因。但是我想,如果我没有去做这个大胆的决策,没有去学习CDA数据分析,字节跳动这个扩张机会来了,我也进不去。这就是机会总是给那些有准备的人准备的。所以学弟学妹们,你们加油努力学习数据分析知识,努力学习数据分析技能。只要你的技能扎实,当好机会来临,你们也能抓得住。相信有很多非985非211同学也想进入互联网大厂工作。我相信你们也可以跟我一样,通过这个数据分析技能获得进入到一线大厂工作的机会。还是刚才那句话,机会是给那些有准备的人准备的。我从没想过我去学习数据分析,就一定能进入到字节跳动等互联网大厂。我当时只是想多准备一些技能,以便可以把握住更好的机会。希望大家也抱着这个心态努力学习,多准备一些技能,你也就可以把握住更好的机会,因为机会一旦来临,你没有时间去准备技能的,你如果没有准备好技能,那谁也帮不了你。
最后感谢CDA,也感谢我选择了CDA并刻苦学习了三个多月CDA课程。课程的价值很高,现在我也不时的回顾一下录播课程。每次回顾我都有新的心得体会,相信学过的学弟学妹们也有类似的感受。最后祝福大家跟我一样,通过学习CDA的课程进入到数据分析领域,并在这个领域获得良好长远的职业发展和不断提升的薪资待遇。谢谢大家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26