
很高兴有这个机会,受邀参加CDA校友分享会。
几个月的学习和求职的经历,也让我感慨颇多,有一肚子话想跟咱们老师、同学交流,如果有些我个人的成功、失败之处,也希望对大家有一定的借鉴。我的起点比较低,如果我都能成功,相信其他人肯定也能成功。
来CDA之前
我今年22岁,大专学历。我的专业是高尔夫运动管理,可能大伙都没听过!是不是很高大上,天天接触有钱人?
我们的专业课,包括高尔夫专项技术、规则礼仪、产业概论、俱乐部管理、赛事管理、营销实务等。我的高尔夫球也打得不错哦,如果有校友对高尔夫运动感兴趣,可以找我私聊,免费指导哈!
一看开设的课程,你就能发现高尔夫运动管理专业就是为这种高端体育项目量身打造的,所以我们对口的就业方向比较窄。目前面对国内经济形势,还有疫情影响,现在就业压力很大。虽然也能找到一些跟高尔夫球运动、高端体育场馆等相关的工作,但整体收入不高、也不稳定,多是以销售为主,跟业绩挂钩。
这也是我来CDA之前比较苦恼的地方。想要趁着年轻再学点技术,心里有底。而且大专嘛,确实学历比较低,很多工作连面试机会都没有。
学在CDA
我来CDA学习,选择的是面授班,这样能天天接触到老师和同学,不懂就当面请教。班主任还特意给我引荐了两位助教,阿涛老师经常在晚上给我开小灶,在这里也表达一下感谢。
助教冲哥也跟我讲解了该怎么学习、怎么看视频,又推荐了一些基础的入门书籍,给我增加了不少信心。后来还跟我聊起他年轻时候在高考受挫、大学奋斗、工作后辞职考研等经历,让我备受鼓舞,年轻的时候就该折腾,没有什么好怕的。
开始几天确实心里有些发怵,之前对数据分析接触少、基础也比较差,更是不知道将来应该选择什么就业方向。班主任露露了解到我的情况后,安排负责就业的佟老师跟我聊了几个小时,帮着分析我的特点、个性特长应该往哪个方向发展,也让我对数据分析这个行业和就业市场有了一个清晰的认识。
上课这两个月我觉得自己还挺拼的,几乎掉了一层皮。主要是基础太差了,再加上刚接触这块,现在我感觉基础还没有那么扎实,而且越学越觉得有好多内容要去恶补。好在现在慢慢入门,知道该怎么学了。
求职之路
咱们就业老师每周组织的线上老学员求职及工作分享会,我几乎一期不落,不过一直潜水、很少发言。在这个分享会上我获得了很多启发和指点,也希望咱们这个活动一直办下去。
找工作的经历比较痛苦,因为我的专业和学历都没有竞争力,所以投简历阶段基本就被淘汰了。那段时间我打了一阵零工,也跟咱们CDA的老师和同学保持着联系。一边挣钱养活自己,一边继续学习,给自己鼓劲。
后来听就业佟老师说有一个咱们CDA的老学员所在的公司招人,帮我安排了一个面试的机会。面试前几天,我让助教阿涛老师帮我把知识点系统地串了一下,还请佟老师给我针对性地做了一个模拟面试,最后又帮我优化了一遍简历。
坦白的说,面试的结果一般般,但我还是很荣幸地拿到了这次工作的机会。我在想他录取我的原因是什么呢?除了有校友这层关系,也许是我比较上进,人比较踏实,而且还比较年轻,可塑性强吧。
再回首
回首我的逆袭之路,我觉得下面三点非常重要:
1、 一定要找靠谱的培训机构
比如像CDA这样即专业、负责,又有温度的大家庭,能够让我们安全、快速地转换新的人生赛道。
2、 一定不要放弃自己
记得有碗毒鸡汤是这么说的:条条大路通罗马,而有人就出生在罗马。确实,人分三六九等,每个人的起点都不一样,如果我们就此认命,像现在流行的所谓“躺平”,那真是不用活了。我觉得年轻的时候还是要拼一把,这样老了才不后悔!
3、 一定要抓住每一次机会
比如我来CDA后一直跟老师和同学保持着联系,这是我进入数据分析行业的人脉和领路人啊。
比如求职的时候,很多同学说不考虑第三方外包公司、不考虑太初级的数据治理打标签、取数之类的工作,关键是你有这个资本挑三拣四吗?先把工作拿下来、先入行、先把自己的技术搞牛了再说嘛。
当然,现在的我还远没有成功,只能说开了一个好头,还要继续努力,不断夯实基础,争取在数据分析师这条路上越走越稳!
再次感谢CDA,还有我们校友大家庭,祝咱们都越来越好!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23