京公网安备 11010802034615号
经营许可证编号:京B2-20210330
很高兴有这个机会,受邀参加CDA校友分享会。
几个月的学习和求职的经历,也让我感慨颇多,有一肚子话想跟咱们老师、同学交流,如果有些我个人的成功、失败之处,也希望对大家有一定的借鉴。我的起点比较低,如果我都能成功,相信其他人肯定也能成功。
来CDA之前
我今年22岁,大专学历。我的专业是高尔夫运动管理,可能大伙都没听过!是不是很高大上,天天接触有钱人?
我们的专业课,包括高尔夫专项技术、规则礼仪、产业概论、俱乐部管理、赛事管理、营销实务等。我的高尔夫球也打得不错哦,如果有校友对高尔夫运动感兴趣,可以找我私聊,免费指导哈!
一看开设的课程,你就能发现高尔夫运动管理专业就是为这种高端体育项目量身打造的,所以我们对口的就业方向比较窄。目前面对国内经济形势,还有疫情影响,现在就业压力很大。虽然也能找到一些跟高尔夫球运动、高端体育场馆等相关的工作,但整体收入不高、也不稳定,多是以销售为主,跟业绩挂钩。
这也是我来CDA之前比较苦恼的地方。想要趁着年轻再学点技术,心里有底。而且大专嘛,确实学历比较低,很多工作连面试机会都没有。
学在CDA
我来CDA学习,选择的是面授班,这样能天天接触到老师和同学,不懂就当面请教。班主任还特意给我引荐了两位助教,阿涛老师经常在晚上给我开小灶,在这里也表达一下感谢。
助教冲哥也跟我讲解了该怎么学习、怎么看视频,又推荐了一些基础的入门书籍,给我增加了不少信心。后来还跟我聊起他年轻时候在高考受挫、大学奋斗、工作后辞职考研等经历,让我备受鼓舞,年轻的时候就该折腾,没有什么好怕的。
开始几天确实心里有些发怵,之前对数据分析接触少、基础也比较差,更是不知道将来应该选择什么就业方向。班主任露露了解到我的情况后,安排负责就业的佟老师跟我聊了几个小时,帮着分析我的特点、个性特长应该往哪个方向发展,也让我对数据分析这个行业和就业市场有了一个清晰的认识。
上课这两个月我觉得自己还挺拼的,几乎掉了一层皮。主要是基础太差了,再加上刚接触这块,现在我感觉基础还没有那么扎实,而且越学越觉得有好多内容要去恶补。好在现在慢慢入门,知道该怎么学了。
求职之路
咱们就业老师每周组织的线上老学员求职及工作分享会,我几乎一期不落,不过一直潜水、很少发言。在这个分享会上我获得了很多启发和指点,也希望咱们这个活动一直办下去。
找工作的经历比较痛苦,因为我的专业和学历都没有竞争力,所以投简历阶段基本就被淘汰了。那段时间我打了一阵零工,也跟咱们CDA的老师和同学保持着联系。一边挣钱养活自己,一边继续学习,给自己鼓劲。
后来听就业佟老师说有一个咱们CDA的老学员所在的公司招人,帮我安排了一个面试的机会。面试前几天,我让助教阿涛老师帮我把知识点系统地串了一下,还请佟老师给我针对性地做了一个模拟面试,最后又帮我优化了一遍简历。
坦白的说,面试的结果一般般,但我还是很荣幸地拿到了这次工作的机会。我在想他录取我的原因是什么呢?除了有校友这层关系,也许是我比较上进,人比较踏实,而且还比较年轻,可塑性强吧。
再回首
回首我的逆袭之路,我觉得下面三点非常重要:
1、 一定要找靠谱的培训机构
比如像CDA这样即专业、负责,又有温度的大家庭,能够让我们安全、快速地转换新的人生赛道。
2、 一定不要放弃自己
记得有碗毒鸡汤是这么说的:条条大路通罗马,而有人就出生在罗马。确实,人分三六九等,每个人的起点都不一样,如果我们就此认命,像现在流行的所谓“躺平”,那真是不用活了。我觉得年轻的时候还是要拼一把,这样老了才不后悔!
3、 一定要抓住每一次机会
比如我来CDA后一直跟老师和同学保持着联系,这是我进入数据分析行业的人脉和领路人啊。
比如求职的时候,很多同学说不考虑第三方外包公司、不考虑太初级的数据治理打标签、取数之类的工作,关键是你有这个资本挑三拣四吗?先把工作拿下来、先入行、先把自己的技术搞牛了再说嘛。
当然,现在的我还远没有成功,只能说开了一个好头,还要继续努力,不断夯实基础,争取在数据分析师这条路上越走越稳!
再次感谢CDA,还有我们校友大家庭,祝咱们都越来越好!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11