
我从17年毕业后,一直在字节跳动西安做审核。做了两年多的审核工作,我对这个工作失去了热情。字节的视频审核和文字审核并非完全使用机器,采取的是双重审核,先机器审核筛选后再做人工审核的方法。工作的时候,我们需要一直盯着电脑看着那一个个视频或者一段段文字,并且还要从其中找到违规问题,这是很费眼力的。而且关键是这个工作还特别要求时限性,领导方面一直在说“数据堆积了要压下来”,让人有时候很有压力;有时又会出现数据量不足的情况,自己只能加班干等数据。领导说是量高了就有绩效奖励,但其实根本不会让员工挣得多。而且这个工作是白班夜班轮流的,到了夜班,又是一宿的盯着电脑,眼睛都要盯花了。回到家人很困,想睡一觉,但天一亮,回家的路上会使人变得精神,到家了想睡还难以入睡,就算困意来临,窗外的噪音也一声接一声的影响着人入睡,这种痛苦只有从事过夜班工作的人才会理解。于是我就考虑,我应该换个工作了。
经过一阵犹豫,我在19年10月份决定辞职去寻找新的职业机会。辞职后四处撒网到处投简历,大大小小的面试也经历了几十场,偶然的机会看到了CDA,那会也清楚不能再犹豫了,必须掌握一技之长才能有好的工作。那会儿是20年4月,疫情还没结束,我就去现场考察然后报名入学,当时没有线下班,我这边软磨硬泡负责人同意我在现场教室学习(本人自制力很差,感觉在家不利于学习)。老师是直播上课,西安现场教室开始只有我一个人。入学后我就给自己下了戒令,不找到工作不打游戏不喝酒!后来现场又来了一位学员,两个人一起并肩作战,努力学习。
课程安排是excel、sql数据库、power BI数据可视化、统计学、python、机器学习,知识密集度比较大,每天都学的很充实,干货满满。每个阶段结束会有分组阶段测试,痛点永远在后面,那会听机器学习就像在听天书,感觉难的很,机器学习课程有约一个月的学习时间,主要是围绕sklearn包的几个机器学习算法,例如KNN,随机森林,神经网络之类的,深度学习也是稍微有接触,我硬着头皮学,实在一点不懂的地方回放录播视频继续钻研,感觉当时也就学到了5,6成。另外一定要跟着老师一起做项目案例,多想想实际工作场景里这些技能的应用。在后期工作中,有时间一定要继续回看录播视频复习,因为每次复习,我都有新的学习心得。整个学习过程,确实比较累比较痛苦,但是一定不要放弃,一定要坚持下来。就像那句话说的,明天的你一定会感谢今天努力学习的自己。
重点来了!!!就个人而言培训就是为了找份好工作,所以这个课程的重中之重是最后的就业指导课,一定要听就业老师仔细道来,好的简历和自信很重要,面试岗位之前一定要做功课,看看这个公司的岗位需求可能会问到的知识点,针对他的业务和知识点专门做好准备。经过十几个面试,我在20年8月最后找到了一家叫美林数据的公司,薪资给的11K,比我原先工资的2倍还要多一点,我简直高兴的不要不要!感谢3个月以来努力学习的自己,感谢那些努力练习数据分析的一个个夜晚。当然也感谢CDA。
CDA W学长 22年2月
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08