京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我从17年毕业后,一直在字节跳动西安做审核。做了两年多的审核工作,我对这个工作失去了热情。字节的视频审核和文字审核并非完全使用机器,采取的是双重审核,先机器审核筛选后再做人工审核的方法。工作的时候,我们需要一直盯着电脑看着那一个个视频或者一段段文字,并且还要从其中找到违规问题,这是很费眼力的。而且关键是这个工作还特别要求时限性,领导方面一直在说“数据堆积了要压下来”,让人有时候很有压力;有时又会出现数据量不足的情况,自己只能加班干等数据。领导说是量高了就有绩效奖励,但其实根本不会让员工挣得多。而且这个工作是白班夜班轮流的,到了夜班,又是一宿的盯着电脑,眼睛都要盯花了。回到家人很困,想睡一觉,但天一亮,回家的路上会使人变得精神,到家了想睡还难以入睡,就算困意来临,窗外的噪音也一声接一声的影响着人入睡,这种痛苦只有从事过夜班工作的人才会理解。于是我就考虑,我应该换个工作了。
经过一阵犹豫,我在19年10月份决定辞职去寻找新的职业机会。辞职后四处撒网到处投简历,大大小小的面试也经历了几十场,偶然的机会看到了CDA,那会也清楚不能再犹豫了,必须掌握一技之长才能有好的工作。那会儿是20年4月,疫情还没结束,我就去现场考察然后报名入学,当时没有线下班,我这边软磨硬泡负责人同意我在现场教室学习(本人自制力很差,感觉在家不利于学习)。老师是直播上课,西安现场教室开始只有我一个人。入学后我就给自己下了戒令,不找到工作不打游戏不喝酒!后来现场又来了一位学员,两个人一起并肩作战,努力学习。
课程安排是excel、sql数据库、power BI数据可视化、统计学、python、机器学习,知识密集度比较大,每天都学的很充实,干货满满。每个阶段结束会有分组阶段测试,痛点永远在后面,那会听机器学习就像在听天书,感觉难的很,机器学习课程有约一个月的学习时间,主要是围绕sklearn包的几个机器学习算法,例如KNN,随机森林,神经网络之类的,深度学习也是稍微有接触,我硬着头皮学,实在一点不懂的地方回放录播视频继续钻研,感觉当时也就学到了5,6成。另外一定要跟着老师一起做项目案例,多想想实际工作场景里这些技能的应用。在后期工作中,有时间一定要继续回看录播视频复习,因为每次复习,我都有新的学习心得。整个学习过程,确实比较累比较痛苦,但是一定不要放弃,一定要坚持下来。就像那句话说的,明天的你一定会感谢今天努力学习的自己。
重点来了!!!就个人而言培训就是为了找份好工作,所以这个课程的重中之重是最后的就业指导课,一定要听就业老师仔细道来,好的简历和自信很重要,面试岗位之前一定要做功课,看看这个公司的岗位需求可能会问到的知识点,针对他的业务和知识点专门做好准备。经过十几个面试,我在20年8月最后找到了一家叫美林数据的公司,薪资给的11K,比我原先工资的2倍还要多一点,我简直高兴的不要不要!感谢3个月以来努力学习的自己,感谢那些努力练习数据分析的一个个夜晚。当然也感谢CDA。
CDA W学长 22年2月
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04