
CDA数据分析师 出品
大家好,我是CDA就业班的学员,目前在某知名互联网企业从事数据分析工作。今天给大家分享一下我在面试过程中的一些经验教训,希望能给大家一些帮助。
之前我面试过一家做广告投放的公司。在面试之前,我对这个公司做哪几块业务做了了解,并且在网上找了广告投放的相关案例。
在面试时,我会根据这个项目和案例跟面试官进行介绍。说一下我会用什么算法去做这个案例,会考虑哪些维度,说明自己的大概思路,让面试官觉得你对这个项目有一定的了解。
当时我介绍了做相应项目时,在变量方面我主要考虑了两个维度:一个方面是投放后的用户行为,比如注册时间,访问的深度转换率等;另一方面,投放广告本身的维度,比如广告的尺寸、广告的卖点、广告的投放渠道等。
根据这两个维度,构建模型,最后得到了什么样的结果。当时我阐述的是,通过算法我将用户分成几类,并通过聚类提取每类用户的特征。根据投放的广告,可能第一类用户在注册方面一般,但付费方面转化比较好。然后二类用户的话,在用户精确度方面就表现得更好。第三类用户,在转化方便表现不太好,但在注册拉新方面表现很不错等等。
接着讲清楚在实际当中是怎么运用的,如何给到业务部门意见。在进行分析中,每个渠道有对应的唯一标志,业务部门可以追溯到具体渠道。
比如各方面表现欠佳的用户类别,在预算不足的情况下,是否要选择放弃。对于一类和二类用户,就可以加大投放,特别第二类用户,因为其各方面质量非常高。如果注册方面不太好,我们是否考虑针对,这两类用户对注册引导进行改进。相对而说,第四类用户注册数据很好,在要做大型活动促销时,需要大量用户流量进来,这时就可以考虑把第四个渠道作为业务部门的主推渠道,这会很利于拉新。
我在给面试官阐述项目时大概是以上的思路。首先基于哪些维度考虑分析问题,然后用了什么算法,得出怎样的结论,结论是如何给业务部门赋能的。
通过这样的介绍,面试官会对你阐述的内容比较感兴趣,并且进行进一步提问,会涉及到一些技术性的问题。比如用到算法的原理是怎么样,以及数据清洗的问题等等。
比如刚刚提到的维度中有注册率、广告尺寸这些维度不是一个类型的,该怎么进行处理呢?
这时你要明白,面试官是在问关于数据清洗的问题。
你可以回答,我们对数据肯定要进行处理,比如哑编码等方式,以及调用什么包进行处理。同时你需要对整个流程非常熟悉,做到心中有数。
这里值得强调一下的是,在准备面试的项目介绍方面,需要准备得更充分。
比如项目从开始准备到落地,具体花了多长时间,团队是几个人负责的项目等,这些在面试过程中都会问到。
面试官的目的是想通过项目的时间,参与的人数来判断项目的真实性。因为企业考虑到如果是虚拟的项目,可参考的价值就不大了。一般企业想知道你所解决的项目是真实的,当时你具体是怎么做的。因为对于企业而言,他们都想招到一些有实际业务经验、有数据分析相关项目经验的候选人。
因此求职的小伙伴们,在准备过程中要把这方面梳理地详细一些,熟悉所做过的项目,了解面试公司所做的业务。
技术性问题方面,大多会考察SQL和Python相关的技术点,这方面大家可以多刷题来提高。
值得注意的是,大家一定要提前了解面试企业的主要业务,在回答面试相关问题的时候,尽可能贴近目标企业的主要的业务来举案例,这样的话更容易把问题控制在自己可控制的范畴内。
这里有个小技巧,在HR通知你去面试的时候,你可以问HR要一下公司的对外资料,一般情况下都会给的,这样能帮助你了解熟悉面试公司的业务情况。同时,面试中尽量把问题控制在自己熟悉的领域。
以上就是我本次的分享了,希望对大家有所帮助,也祝大家求职顺利。数据分析的能力的培养不是能够一蹴而就的,除了基础的模型和思维的掌握之外,还需要大量实践经验的积累。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18