京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
大家好,我是CDA就业班的学员,目前在某知名互联网企业从事数据分析工作。今天给大家分享一下我在面试过程中的一些经验教训,希望能给大家一些帮助。
之前我面试过一家做广告投放的公司。在面试之前,我对这个公司做哪几块业务做了了解,并且在网上找了广告投放的相关案例。
在面试时,我会根据这个项目和案例跟面试官进行介绍。说一下我会用什么算法去做这个案例,会考虑哪些维度,说明自己的大概思路,让面试官觉得你对这个项目有一定的了解。
当时我介绍了做相应项目时,在变量方面我主要考虑了两个维度:一个方面是投放后的用户行为,比如注册时间,访问的深度转换率等;另一方面,投放广告本身的维度,比如广告的尺寸、广告的卖点、广告的投放渠道等。
根据这两个维度,构建模型,最后得到了什么样的结果。当时我阐述的是,通过算法我将用户分成几类,并通过聚类提取每类用户的特征。根据投放的广告,可能第一类用户在注册方面一般,但付费方面转化比较好。然后二类用户的话,在用户精确度方面就表现得更好。第三类用户,在转化方便表现不太好,但在注册拉新方面表现很不错等等。
接着讲清楚在实际当中是怎么运用的,如何给到业务部门意见。在进行分析中,每个渠道有对应的唯一标志,业务部门可以追溯到具体渠道。
比如各方面表现欠佳的用户类别,在预算不足的情况下,是否要选择放弃。对于一类和二类用户,就可以加大投放,特别第二类用户,因为其各方面质量非常高。如果注册方面不太好,我们是否考虑针对,这两类用户对注册引导进行改进。相对而说,第四类用户注册数据很好,在要做大型活动促销时,需要大量用户流量进来,这时就可以考虑把第四个渠道作为业务部门的主推渠道,这会很利于拉新。
我在给面试官阐述项目时大概是以上的思路。首先基于哪些维度考虑分析问题,然后用了什么算法,得出怎样的结论,结论是如何给业务部门赋能的。
通过这样的介绍,面试官会对你阐述的内容比较感兴趣,并且进行进一步提问,会涉及到一些技术性的问题。比如用到算法的原理是怎么样,以及数据清洗的问题等等。
比如刚刚提到的维度中有注册率、广告尺寸这些维度不是一个类型的,该怎么进行处理呢?
这时你要明白,面试官是在问关于数据清洗的问题。
你可以回答,我们对数据肯定要进行处理,比如哑编码等方式,以及调用什么包进行处理。同时你需要对整个流程非常熟悉,做到心中有数。
这里值得强调一下的是,在准备面试的项目介绍方面,需要准备得更充分。
比如项目从开始准备到落地,具体花了多长时间,团队是几个人负责的项目等,这些在面试过程中都会问到。
面试官的目的是想通过项目的时间,参与的人数来判断项目的真实性。因为企业考虑到如果是虚拟的项目,可参考的价值就不大了。一般企业想知道你所解决的项目是真实的,当时你具体是怎么做的。因为对于企业而言,他们都想招到一些有实际业务经验、有数据分析相关项目经验的候选人。
因此求职的小伙伴们,在准备过程中要把这方面梳理地详细一些,熟悉所做过的项目,了解面试公司所做的业务。
技术性问题方面,大多会考察SQL和Python相关的技术点,这方面大家可以多刷题来提高。
值得注意的是,大家一定要提前了解面试企业的主要业务,在回答面试相关问题的时候,尽可能贴近目标企业的主要的业务来举案例,这样的话更容易把问题控制在自己可控制的范畴内。
这里有个小技巧,在HR通知你去面试的时候,你可以问HR要一下公司的对外资料,一般情况下都会给的,这样能帮助你了解熟悉面试公司的业务情况。同时,面试中尽量把问题控制在自己熟悉的领域。
以上就是我本次的分享了,希望对大家有所帮助,也祝大家求职顺利。数据分析的能力的培养不是能够一蹴而就的,除了基础的模型和思维的掌握之外,还需要大量实践经验的积累。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11