京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
编辑:Mika
各位同学大家好,我是CDA数据分析就业班的学员,非常荣幸参加今天的分享。
最近我前后经过五次面试,进入了自己心仪的头部互联网大厂——腾讯,目前主要是从事信息安全方面的数据运营分析相关工作。今天主要跟来分享一下过往自己在面试求职中的一些经验教训,和大家一起共同学习。
我主要准备从五大方面跟大家分享一下。
第一部分是关于面试前的准备。第二部分是面试中的表现,第三部分是面试后的复盘,第四部分是面试中涉及到一些高频问题以及注意事项,已经第五部分是不同行业的面试经验。
首先看到第一部分,面试前的准备。
我们在面试在求职之前,简历一定要准备好。我们在写检验过程中,可以主动去寻求CDA就业老师的帮助,帮助系统梳理过往的工作经验,尽量能够提炼出我们的工作成绩,能够量化的去体现。
对于有工作经验的学员,项目经历这一块是一定深入挖掘的。去挑重点,将突出的部分写到我们简历上。对于刚毕业的同学,在大学期间或者是在CDA学过的一些项目都可以写进去。
关于投递简历,除了通过Boss直聘平台,还可以让老师推荐,只要是与数据分析相关的岗位,不限行业都可以去投,这样能争取更多的面试机会。
但是需要注意是,面试建议一天约一到两家,错开时间进行。根据我之前的面试情况来看,我当时一天最多面了有三家,但这样会导致你一天下来很累,然后也没有时间进行复盘。
同时在面试前,一定要去官方网站去了解你意向公司的行业、产品、招聘岗位的工作要求,有针对性去做准备,这样的话就可以有备无患。在面试的时候跟面试官可以有更多的话题去聊。
关于自我介绍,可以准备大概时长在1到2分钟的。最好把内容话术写下来,进行模拟练习,这样你在熟练后在面试时就能做到临危不乱。
另外面试前至少每天坚持SQL的练习。
根据之前我面试的情况来看,有一些公司侧重于数据提取和数据挖掘方面,从而对SQL的要求会高一点,这方面就需要不断的刷题。不同的岗位侧重点不同,如果是业务型的数据分析岗,那么对这个行业需要了解的更深入,然后一般情况下都是会有SQL和 Excel的笔试题。
虽然我在过往的面试中,我只遇到过一家笔试是针对SQL 的,但我觉得这还是要引起足够重视。
第二部分是面试中的表现。这一部分也是很极其重要的,考验是大家临场发挥的状态。我觉得首先是要做到平衡心态,在面试中保持微笑,这样你在与面试官交流中就可以做到不卑不亢。如果遇到不熟悉的问题,可以稍微带过一下,切忌解释过多,暴露缺点,避免给自己挖坑。
其次针对你过往的每一份工作中的主要内容和个人业绩,这一块是要做到相当熟悉。
因为面试官在问你具体的一些项目经历时,他会要求你从业务背景出发。这时你就要去简要阐述你运用了一些什么方法,什么工具,解决了一些什么问题,你的原因分析以及改善措施是怎样的,已经如何跟进,如何用数据去驱动运营,从而改善运营中的问题,最终实现更大的业务价值。
这时可以通过数字直接量化指标,以举例子的形式,向面试官展示你的工作成绩,这样才能使人信服,获得好感。
关于复盘,在面试结束后尽快对面试进行总结,复盘做的不足的地方,然后去完善。通过复盘,可以为之后的面试做进一步改善和优化。
举个例子,比如你的自我介绍句子已经写的很流畅,但你表达时可能会发现表达不清楚不流畅的情况买这些都是可以通过及时的面试复盘发现的,之后可以针对不足之处进行加强练习。
下面聊聊在面试过程中会遇到的高频问题已经相关应答的注意事项。
我之前入职时经过了5轮面试。特别是像大公司的流程会很繁琐,而且等待时间也很长。你期间也会在不同的面试其他公司,同时也在等待挑选自己的意向岗位。
下面我把我面试中被问到的高频问题给大家总结分享一下。
第一个问题就是个人的离职原因。
基本上在第一轮面试都会问。你在回答离职原因时,尽量说客观的因素,比如家庭原因或者个人职业规划的调整,这类相对客观一点的。切忌说因为跟领导同事关系不合,或者是因为之前的公司不好,不要表达出各种抱怨的情绪,这会给对方造成非常不好的印象,甚至导致在第一轮就被pass。
第二个问题会问到部门的架构,你之前工作中做了哪个项目,在团队中的分工情况是怎么样的。
对于这个问题可以提前有针对性的进行准备,在表达时主题突出重点,注意逻辑通畅,表达通顺。
第三个问题,如果是跨行业的话,会问你应聘这个岗位的优势和劣势在哪里?
如果你是从其他行业跨行过来的,面试官就会问你为什么要进入另外的行业,其实这也是在问你的求职动机。各位小伙伴在求职的过程中就要多准备一下这方面的思考。
第四个问题,就是阐述你在过往的经历中,最有成就感的一件事。
这种问题其实是想考察你的表达能力,以及你过往做了哪些事,然后借此来判断你在这个过程中的组织能力,以及解决问题的能力。回答时通过举例子的形式去讲述就好了,注意提炼观点。
第五个问题,是举例说明你与数据分析相关的案例。
在这个过程中,大家要从业务背景出发进行阐述。你运用了什么方法,什么工具,解决了什么问题,达到了什么样的效果。以及当中用了哪些分析方法,还有哪些改善措施都要简要的说明一下。
第六个问题,跟业务相关的。
面试官会问你某一个指标下降了,然后分析是什么原因导致。比如我之前在面试一家公司,主要做拍照app的。面试是提出了一个场景,说日用日活跃用户120万,突然在某一天次日留存率下降了,然后让你去分析是哪些方面导致了异常的产生。我当时回答时也漏了一个方面。这个问题需要从长期和短期去看,我当时忽略了从短期看异常产生的因素。如果是做指标运营这一块的,大家可能就得注意这一点。
第七个问题,个人的职业规划。
这一块要具体一点,你最好说能够说一下你多少年内能做到一个什么样的程度。这样的话,你让面试官觉得你是对未来有规划的,做事有计划有条理,同时也增加了不少的好感度。
最后一部分是不同行业的面试经验。
其实同行业跳槽的录用性可能会更高一点。比方说你之前是在互联网行业,然后你这一次跳槽也是在互联网行业跳槽,或者是从传统行业跳入制造行业,就这种的话录用的可能性会高一点。但因为面试官都会参照你过往的经历去匹配你的工作情况。
就我个人而言,之前我面试的公司也涵盖了很多行业。比如物流制造、新媒体、广告、金融、互联网这些行业我都尝试了一下。去经历过后你才会知道这个公司到底需要什么样的人,然后他们在招岗位的时候也相当于在对你做挑选,看你的个人经历与他们希望的符合程度,每个行业的要求以及难度也是不一样的。
因为面试官问的更多的是一些基本性问题,如果是偏技术的岗位,我个人觉得跨行业是问题不大的。比如像计算机专业的,在每一个行业基本上都是通用的。如果是偏业务分析的话,就优先同行业去准备面试,如果跨行业就相对难度会更大一点,相对你承受的心理压力和心理预期都会有所降低,包括你的薪资期望。
另外像城市方面,北上广深这类互联网行业更集中,数据分析的需求也更大一些。新一线城市以及二线城市的薪资和机会肯定是跟北上广深有差距的。这方面大家需要各取所需,根据自己的工作层次,意向城市等方面在面试时对应薪资期望。如果从一线换到非一线城市,薪资上会有一定的降幅,这些也是需要有心理准备的。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03