京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前几天,我们数据分析就业班新报名的一个学员跟我们聊起了她的报名原因:她在面试一家心仪行业头部大厂的市场总监岗位时,三面的业务笔试70%内容都需要用数据分析来解答。虽然市场工作经验、管理能力和资源都不错,但还是遗憾的折戟沉沙。
所以她痛定思痛找到CDA数据分析师,一定要快速又有保障的系统掌握数据分析的能力。
上面这个学员遇到的这个问题不是个例,而是现在职场高阶晋升的普遍需求。
CDA数据分析师小编想起了知乎上有一个很火的帖子:如何能够拿到年薪50万?这个帖子受到了很多人的关注。
我个人认为想要拿到年薪50万,首先你要能够为公司带来相应的价值。
我和很多互联网从业者都交流过,他们大部分人一致认为自己工资不高的原因是因为待在小公司,如果换在阿里、腾讯、华为等企业,就一定能够拿到高薪。
不可否认这是其中的一个因素,但是你有没有想过,你目前掌握的技能支持你拿到年薪50万吗?
有很多人说自己的专业水平在行业同等职位中已经属于上层水平,但我想说的是这还远远不够。你想要拿到高薪,就一定要拥有一项通用技能。
所谓通用技能,我认为要满足几个条件:
1.能够为自己的职业增添色彩,无论是换工作还是涨薪都能如鱼得水。
2.帮助公司解决实际的业务问题,推动业务数据增长。
3.发展前景好,薪资涨幅高。
这里我推荐的技能是:数据分析
有人曾经分析过1000份简历,70%以上的岗位都要求具备数据分析能力,特别是高阶岗位。
翻看某招聘网站产品总监、市场总监、运营总监等任职资格时,都要求具备分析能力。当然,这个层级的分析必定是基于数据,而不是凭经验拍脑袋。
如果你不懂数据想要在互联网行业发展起来是非常困难的。只能一直在基层岗位做执行工作,而且还要面临随时被淘汰的风险。
无论是产品、市场还是运营只有具备数据分析能力,才能让策略更科学且落地,对业务产生的价值才能够更高。
举个例子
初级运营:你可能每天都在看数据、并把他们筛选出来。但是你却发现不了业务问题,解决不了业务困境。
高级运营:你需要对业务指标负责,定期通过数据来发现业务问题。迅速做出动作,对业务结果负责。
初级产品经理:容易盲目的做出一堆功能,却不知道这些功能的效用,也不知如何做优先级排序。
高级产品经理:通过建立数据漏斗定义问题所在,且能找到可评估的数据指标来跟进上线功能的效果,用数据驱动产品业务增长。
通过以上介绍,你会发现岗位越高,需要的数据分析能力就要越强。因为只能通过数据分析才能解决实际的业务问题。对于企业来说,这才是高价值的体现。
互联网、金融、咨询、电信、零售、医疗、旅游……不管你身处什么行业,可以说数据分析能力都是你晋升路上的一大助力。
具备数据分析能力的你为什么会受到公司青睐?
发现问题
发现问题是数据分析的第一层目的,其目的在于通过一定的数据呈现形式,挖掘和发现运营各个环节与业务增长各个模块的问题,将问题进行分类和汇总,即明确当前运营状况问题所在。
分析问题
第二层目的是在发现问题后,需要梳理其出现当前结果的具体原因,且是以实际情况为依据的。发现的每一个问题,可能是业务层面的每个变动所致,也可能是产品层面的迭代所致,因此需要一一排查,得出一个实际有效的结论。
解决方案
当从发现问题,并找到了问题的具体原因后,数据分析第三个层面目的是提出解决问题的方案,解决问题是数据分析的最终目的。解决问题需要运用一定的数据分析工具及分析方法,并且有足够的数据源来支撑,将挖掘出来的问题,从业务、运营、产品等层面进行对接,找出最佳的解决方案。
很多不懂数据的职场人,常常会被别人的数据搞糊涂,工作中很多东西都无法判断。比如,前一段时间,媒体说腾讯平均月薪 7 万,这么写的人,如果不是为了博眼球,真的长脑子了?看了之后,如果你信的话,别人会怀疑你没长脑子。
类似的问题还有很多,可以这么说,具备数据分析能力能让自己更有价值。除此之外,也能帮助我们做好各种决策。
除了业务上的思维外,如果想要深度学习数据分析,则需要掌握一些工具的使用如:Excel、Python、R、SQL等等。如果想要进一步了解、学习,可以扫码领取数据分析技能礼包。
如我们上文所说,数据分析能力可以说是每个业务岗位必备的能力,这一点也成为了越来越多企业管理层的共识。
但掌握数据能力的急迫性还没有得到大家足够的重视!大家学习数据分析能力的动作还没有!
很多人可能会像我们前言中介绍的这位学员一样,只有撞了南墙,错失了好机会后,才会在悔恨之余开始积极学习。
同为市场人,小编之前也是这种心态,这与我们对本岗位的长远职业规划不清晰有一定关系。
今儿小编汇总了几个数据能力加持下的业务岗位成长路线图,希望帮你把前路看的更清楚。
不管是根据目前业务需求自学还是为以后职场发展系统学习,小编认为你都应该行动起来了。
那么,不妨今天先从进一步了解数据分析开始~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29