
前几天,我们数据分析就业班新报名的一个学员跟我们聊起了她的报名原因:她在面试一家心仪行业头部大厂的市场总监岗位时,三面的业务笔试70%内容都需要用数据分析来解答。虽然市场工作经验、管理能力和资源都不错,但还是遗憾的折戟沉沙。
所以她痛定思痛找到CDA数据分析师,一定要快速又有保障的系统掌握数据分析的能力。
上面这个学员遇到的这个问题不是个例,而是现在职场高阶晋升的普遍需求。
CDA数据分析师小编想起了知乎上有一个很火的帖子:如何能够拿到年薪50万?这个帖子受到了很多人的关注。
我个人认为想要拿到年薪50万,首先你要能够为公司带来相应的价值。
我和很多互联网从业者都交流过,他们大部分人一致认为自己工资不高的原因是因为待在小公司,如果换在阿里、腾讯、华为等企业,就一定能够拿到高薪。
不可否认这是其中的一个因素,但是你有没有想过,你目前掌握的技能支持你拿到年薪50万吗?
有很多人说自己的专业水平在行业同等职位中已经属于上层水平,但我想说的是这还远远不够。你想要拿到高薪,就一定要拥有一项通用技能。
所谓通用技能,我认为要满足几个条件:
1.能够为自己的职业增添色彩,无论是换工作还是涨薪都能如鱼得水。
2.帮助公司解决实际的业务问题,推动业务数据增长。
3.发展前景好,薪资涨幅高。
这里我推荐的技能是:数据分析
有人曾经分析过1000份简历,70%以上的岗位都要求具备数据分析能力,特别是高阶岗位。
翻看某招聘网站产品总监、市场总监、运营总监等任职资格时,都要求具备分析能力。当然,这个层级的分析必定是基于数据,而不是凭经验拍脑袋。
如果你不懂数据想要在互联网行业发展起来是非常困难的。只能一直在基层岗位做执行工作,而且还要面临随时被淘汰的风险。
无论是产品、市场还是运营只有具备数据分析能力,才能让策略更科学且落地,对业务产生的价值才能够更高。
举个例子
初级运营:你可能每天都在看数据、并把他们筛选出来。但是你却发现不了业务问题,解决不了业务困境。
高级运营:你需要对业务指标负责,定期通过数据来发现业务问题。迅速做出动作,对业务结果负责。
初级产品经理:容易盲目的做出一堆功能,却不知道这些功能的效用,也不知如何做优先级排序。
高级产品经理:通过建立数据漏斗定义问题所在,且能找到可评估的数据指标来跟进上线功能的效果,用数据驱动产品业务增长。
通过以上介绍,你会发现岗位越高,需要的数据分析能力就要越强。因为只能通过数据分析才能解决实际的业务问题。对于企业来说,这才是高价值的体现。
互联网、金融、咨询、电信、零售、医疗、旅游……不管你身处什么行业,可以说数据分析能力都是你晋升路上的一大助力。
具备数据分析能力的你为什么会受到公司青睐?
发现问题
发现问题是数据分析的第一层目的,其目的在于通过一定的数据呈现形式,挖掘和发现运营各个环节与业务增长各个模块的问题,将问题进行分类和汇总,即明确当前运营状况问题所在。
分析问题
第二层目的是在发现问题后,需要梳理其出现当前结果的具体原因,且是以实际情况为依据的。发现的每一个问题,可能是业务层面的每个变动所致,也可能是产品层面的迭代所致,因此需要一一排查,得出一个实际有效的结论。
解决方案
当从发现问题,并找到了问题的具体原因后,数据分析第三个层面目的是提出解决问题的方案,解决问题是数据分析的最终目的。解决问题需要运用一定的数据分析工具及分析方法,并且有足够的数据源来支撑,将挖掘出来的问题,从业务、运营、产品等层面进行对接,找出最佳的解决方案。
很多不懂数据的职场人,常常会被别人的数据搞糊涂,工作中很多东西都无法判断。比如,前一段时间,媒体说腾讯平均月薪 7 万,这么写的人,如果不是为了博眼球,真的长脑子了?看了之后,如果你信的话,别人会怀疑你没长脑子。
类似的问题还有很多,可以这么说,具备数据分析能力能让自己更有价值。除此之外,也能帮助我们做好各种决策。
除了业务上的思维外,如果想要深度学习数据分析,则需要掌握一些工具的使用如:Excel、Python、R、SQL等等。如果想要进一步了解、学习,可以扫码领取数据分析技能礼包。
如我们上文所说,数据分析能力可以说是每个业务岗位必备的能力,这一点也成为了越来越多企业管理层的共识。
但掌握数据能力的急迫性还没有得到大家足够的重视!大家学习数据分析能力的动作还没有!
很多人可能会像我们前言中介绍的这位学员一样,只有撞了南墙,错失了好机会后,才会在悔恨之余开始积极学习。
同为市场人,小编之前也是这种心态,这与我们对本岗位的长远职业规划不清晰有一定关系。
今儿小编汇总了几个数据能力加持下的业务岗位成长路线图,希望帮你把前路看的更清楚。
不管是根据目前业务需求自学还是为以后职场发展系统学习,小编认为你都应该行动起来了。
那么,不妨今天先从进一步了解数据分析开始~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08