京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:Allen
本文为「心中有数」CDA征文作品
首先“虚心”地立个flag,今年年底 LEVEL III 必过,两年通关CDA!(欧气满满)
其实,内心还是有点小担心,LEVEL III 要考案例实操,Python还用的不是很溜,加上还未正式开刷实操题,对题目的形式有些不确定。
但对于LEVEL I 和 LEVEL II 双双得A(得意),本人还是有些一得之见,在此给大家做个分享,希望能帮助到正在备考中的小伙伴们!
我在某互联网电商平台任职运营岗,在数据分析板块属于小白,虽有一定EXCEL的基础,但与平时工作中接触的用户行为数据、产品数据分析来讲,这点完全不够用,因此不得不提升自己的数据分析技能,于是一开始就在网上搜索自学,逐渐了解了大数据、数据库、机器学习这些专用名词,特别是被数字化转型影响,感觉这个时代如果不具备点数据思维和技能,就很快会被AI替代了。
另一方面,自己是业务出身,毕竟数据分析也是为业务服务,所以业务经验+专业技能,这样的发展来对我来讲更靠谱,所以下定决心学习,逼自己一把。
我是在19年开始自学数据分析,下定决心后,就以考取CDA认证作为最终目标(毕竟老牌认证)。
正式备考是从2020年开始,平均每天学习2小时左右,主要以看书(10本)、刷题(官方2000题)和辅导视频(官网课程)为主,到现在快两年了,痛并坚持着,坚持并难受着,但最终还好,LEVEL I 和 LEVEL II 都拿到了A的成绩,也算是享受到了一种来自内啡肽的快乐。
目前正在继续备战LEVEL III,希望能两年圆梦,噩梦结束,美梦成真!
CDA LEVEL I
首先说下LEVEL I:
我大概备考了三个月时间,在备考前,我首先是找官方考试大纲,通过整体把握了解各个模块的大概内容、关系和学习路径,做到心中有一个whole picture,这是LEVEL I的考试大纲:
整体来讲,LEVEL I 就是入门概念+基础技能+可视化,以业务描述性分析为目标,分为上图七个章节,大纲的安排是首先让考生先了解数据分析基本概念、方法和职业,然后以分析过程为路径,先了解什么是数据,数据应该怎么获取,获取后有哪些分析方法,如何将这些方法与业务结合,最后得出可视化的分析结果,思路清晰,学习可以有的放矢。对我来讲(非技术出身),最难的应该属于SQL数据库,毕竟有代码部分,但真正学起来上手还是较容易的,并且可以安慰的是考试不会考编程。
LEVEL I 备考中,
基本可框定两个范围:
LEVEL I 官方的推荐书籍都是选读,这是官方推荐目录:
结合我自身的经验推荐大家必读的有《SQL入门经典》和《统计学》两本就足够了。
CDA LEVEL II
其次说下LEVEL II:
LEVEL I 拿到A后信心满满,短暂休息了一个月,就开始了LEVEL II 的备考。
因为LEVEL II 涉及的教材和学习资料较多,并且还学习了Python,所以LEVEL II 备考我准备了大概4-5个月时间。
以下是LEVEL II 的考纲:
整体来讲,LEVEL II 为数据分析的进阶内容。以专业数据分析流程,分为了6个部分,数据的采集与处理,采集后对数据进行规范化储存管理,接着根据业务的需求进行标签体系的设计,对标签数据进行统计分析、建模,最终数字化工作方法部分为目前比较火热的数字化转型内容,侧重与业务分析流程。LEVEL II 中重难点部分在于统计分析与数据分析模型两部分,这两块设计的专业知识多,要求高的话会用到python进行分析,但值得庆幸的是,LEVEL II 也不考编程操作。
关于LEVEL II 的一些必读选读书籍,官方已经推荐出来,个人建议根据官方的要求学习即可,LEVEL II 主要就是在于花时间,除了啃书看视频,还得实操起来,方能拿到一个理想的成绩。
CDA LEVEL III
最后简单说下LEVEL III ,因为还在备考中,所以对于LEVEL III 的经验分享也只能是一个简单的开头,通过跟其他考生的咨询交流,也有一些重点学习方法。
整体来讲,LEVEL III 在于高级数据分析、数据挖掘、机器学习。
内容涵盖高级分析师的各项基础及进阶的知识点。基础的部分包括数据挖掘基础、高级数据预处理以及机器学习算法。进阶的部分则包括高级特征工程技术、自然语言处理与文本分析及深度学习。在机器学习实战上,涵盖当今较火的几个主题,包括自动机器学习、类别不平衡问题的处理模式、半监督式学习以及模型优化的方法。
LEVEL III 的复习大家推荐的是两本重点教材,《数据挖掘导论》和《数据挖掘:概念与技术》;其次还包括官方必读的几本《机器学习》、《精通特征工程》、《文本分析》等,如下图:
其次就是对模拟题中的案例操作题进行反复的练习,最好能用Python,之前有考生也用的SPSS Modeler这个工具,因为听说案例操作题是历年考过的真题,并且模板和套路都类似,只是需要用的算法可能会不太一样。在此也强烈种草李御玺老师讲的辅导视频课,幽默风趣,深入浅出,对我来讲学习起来很快乐!关于LEVEL III 的一些详细备考方法,得靠通过的大神们分享了。
磕数据的这两年,不仅让我学习了新的技能,而且真正帮助到了我的工作和发展,受益颇深。
这过程让我体会到世界变化之大,稍不留意,新技术可能又来了,无论是企业还是个人,在数字化的潮流中只能勇往直前,只要有这份信念,相信你也能成功上岸!
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
推荐学习书籍
《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门!

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27