京公网安备 11010802034615号
经营许可证编号:京B2-20210330
环保大数据呼之欲出_数据分析师考试
“大数据、‘互联网+’等智能技术已成为推进环境治理体系和治理能力现代化的重要手段,要加强数据综合应用和集成分析,为科学决策提供有力支撑。”6月19日,在环保部开展的“环评和监测工作创新”大讨论上,环保部部长陈吉宁说。--CDA数据分析师考试
数据显示,截至目前,我国已建立各级监测站2700多家,共有监测人员近6万名,监测用房287万平方米,监测仪器设备26.8万台。所有省级监测站都具备水质109项全分析能力,多数省级站装备已达到国内先进水平,所有市级监测站都具备开展空气、地表水、生态、噪声等环境质量监测和污染源监督监测能力,基本能够说清辖区内环境质量状况和污染源排放情况。但同时必须指出的是,环保部门长期形成了数据多头采集的体系,数据冲突的现象时有发生。据介绍,环保部至今没有建立一套统一的污染源数据库。
“各种业务数据和信息分散在不同部门,彼此割裂与相互封闭,缺乏数据整合、共享及综合应用能力。”环保部科技司巡视员兼副司长刘志全说,应尽快开展数据资源统一管理与共享平台建设,建立数据汇交、共享、质控管理机制。同时,按照“数据运营、全民参与、服务社会”的要求,制定环保数据资源服务产业政策,编制环保数据资源目录体系,发布数据资源产品,培育和扶持大数据服务企业,发展新型环保产业。
环保部卫星中心主任王桥认为,新常态下我国环境管理与社会公众对环境监测的要求已不再是简单的数据提供和统计汇总,而是要面向环境质量评价、环境容量测算、环境变化预测、环境绩效考核、环境风险预警、环境监督执法等提供全方位的服务,解决问题的主要途径就是开展环境质量监测数据综合分析。为此,他建议国家启动“环境监测大数据工程”。
在他看来,“环境监测大数据工程”的主要任务有两个方面:一是利用物联网、智能传感、云计算等技术,构建环境监测信息感知体系,实现定点采样、自动监测、现场视频、移动终端等各类监测设备的广义互联、信息融合、实时接入和共享,并全面实现从监测数据到监测信息的转化。
二是利用云计算、数据挖掘、多元统计分析等技术,开发环境质量监测数据综合分析工具与多维可视化表达工具,构建一体化环境监测大数据云服务平台,面向环保系统及全社会推出系列化环境质量监测综合分析数据产品,并按各级环境管理部门与社会公众需求提供云端服务,包括环境质量多维查询、动态分析、趋势预测、综合评估、风险预警、生活服务等,全面实现从监测信息到监测服务的跨越。
“环保部应会同相关部门制定统一的大气、地表水、地下水、土壤、海洋、生态、污染源、噪声、振动等监测技术标准规范,要求排污单位、各类监测机构统一执行,增强各部门监测数据的可比性;并建设环境监测信息传输网络与大数据平台,建立数据集成共享机制,各地环保部门也要做好辖区内监测数据的集成、共享与上传。同时,依据新环保法建立统一的环境监测信息发布制度,由环保部门权威发布环境质量、污染源监测等信息,满足公众环境知情权益。”环保部环境监测司司长罗毅说。-CDA数据分析师考试
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06