
贝叶斯决策法概述
决策的分类有很多种,如果按环境划分,决策可以分为确定型、不确定型和风险型三大类,其中风险型决策是最常见的类型。风险型决策的主要特点是具有状态发生的不确定性。决策者面临着几种可能的状态和相应的后果,且对这些状态和后果得不到充分可靠的有关未来环境的信息,只能依据“过去的信息或经验”去预测每种状态和后果可能出现的概率,在这种情况下,决策者根据确定的决策函数计算出项目在不同状态下的函数值,然后再结合概率求出相应的期望值,此值就是对未来可能出现的平均状况的估计,决策者可以依此期望值的大小做出决策行为。常见的决策函数主要有成本函数、收益函数、效用函数。前面两种函数是从货币因素考虑的,而后者是从非货币因素考虑的。这种以期望值为标准的分析法是决策者在处理风险型问题时常常使用的方法,贝叶斯决策法是最常见的以期望为标准的分析方法。它是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。
如果决策函数是成本函数或收益函数,则决策者是从货币因素考虑问题的。贝叶斯决策模型是决策者在考虑成本或收益等经济指标时经常使用的方法,它是在贝叶斯定理的基础上提出来的。以收益型问题为例,其基本思想是在已知不确定性状态变量θ的概率密度函数f(θ)的情况下,按照收益的期望值大小,对决策方案排序,则最优方案为使期望收益最大的方案。由于由贝叶斯定理可以推出通过抽样增加信息量能够使概率更加准确,概率准确则意味着决策风险的降低,所以贝叶斯定理保证了该决策模型的科学性。
1.收益函数的贝叶斯决策步骤
(1)计算出每种状态的概率,计为Pi。
(2)对于收益型问题,列出条件收益的计算公式,求出在各种状态下相应方案的条件收益CPij,结合概率求出相应的期望值EPij列出贝叶斯决策法收益表。
(3)通过贝叶斯决策法收益表,依次求出在各种状态下可获得的最大期望收益值,它们的和为该问题最理想的期望收益EPC,此时收益最大。
(4)通过贝叶斯决策法收益表,求出各方案下的期望收益EMV,其中最大的值记为EMV * ,使期望收益最大的方案就是最优方案。ECC与EMV * 的差值表示完全情报价值,计为EVPI。
(5)写出答案:最优方案a * =? EMV * =? EVPI=?
2.收益函数的贝叶斯决策模型举例
表1为某百货商场过去200天关于商品B的日销售量纪录,商品B的进价为200元/f牛,售价为600元/f牛,如果当天销售不完,余下全部报废,求该商品的最佳日订货量a * ,及相应的期望收益金额EMV * 和EVPI。
由表1可知,该商场商品B的销售状态空间为θ={θ1,θ1,θ1,θ1,θ1}={5,6,7,8,9},这些状态发生的概率也可以推测出来,见表2。根据此状态空间,决策者的决策空间为A={a1,a1,a1,a1,a1}={5,6,7,8,9}。http://cda.pinggu.org/
当商场的销售量为θi,而进货量为ai时,商场的条件收益为:
而相应的期望收益为EPij = CPij * PI,表3即为此例的贝叶斯决策法收益表:
从经济角度看当日订货量等于日销售量时,商场没有因为多定货或少定货而造成的机会损失,因此获得的收益最大,所以此例理论上的最大利润为EPC=2,720元。但在实际工作中这个值很难得到,除非商场能够根据情况随时调整进货量,因此商场的经营者往往追求的是期望收益的最大值,在此例中当订货量为7时期望收益最大,EMV * 和EVP,分别为2,460元和260元。
EVPI的含义为由于情报不准确而造成的商场的赢利损失,这个损失可能是因为销售量小于7件而引发商品报废产生的损失,也可能是因为销售量大于7件使商场未能多盈利而造成的损失。商场若有百分之百准确的情报,则完全可以避免这类损失,因此定义EVPI为完全情报价值。
为了追求更多的利润,决策者总是希望获取一些准确信高的信息,现在随着越来越多的咨询公司、研究中心的出现,为我们获取高质量的信息提供了可能。只要费用小于预期收入,决策者就可以考虑购买由信息公司提供的情报信息。这些信息主要是通过抽样调查或其他途径得到的概率,与凭借经验预测出来的概率不同它们的可靠性更高,这种概率称为后验概率,而前者称为先验概率。一般的用后验概率代替先验概率进行贝叶斯决策,往往可以得到更准确的方案,这种用后验概率代替先验概率再进行贝叶斯决策,就成为后验分析法。需要指出的是有些情况下并非用后验分析法就一定比先验分析好,如果两者选择的方案相同,则意味着后者在增加成本的情况下收益并没有增加,显然此时先验比后验更加有效率。
决策者在进行决策时可以从货币因素出发进行决策,但因为决策的结果是由决策者承担的,所以决策者个人的心理因素就会对决策的过程产生一定的影响。在众多心理因素中决策者对待风险的态度往往是决定性的因素。同样的问题对于风险稳重者,为了少承担风险,往往少订商品以避免商品的积压;而对于风险爱好者,他对未来的预期很高,则会冒险订购较多的商品;而对待风险持中间型态度的决策者则往往只单纯的从货币因素进行考虑。由于对风险的态度不同,所以不同的订货量给决策者所带来的满意程度也是不同的,而效用函数则可以表示这种不同。决策者会选取效用最大的方案作为候选方案。
1.效用函数决策步骤
(1)计算出每种状态的概率,计为Pi。
(2)列出效用函数,求出在各种状态下相应方案的效用值U(θi,ai),结合概率求出相应的期望值EUij,列出效用决策表。
(3)通过效用决策表,求出各方案下的期望效用EUi,其中最大的记为EU * ,使期望效用最大的方案就是最优方案。
(4)写出答案:最优方案a * =?; EU * =?。
2.效用函数决策模型举例
仍然讨论上面的例子,假设决策者为风险稳重者,其效用值随着日定货量和日销售量的差值的增大而减小,且当日定货量等于日销售量时,决策者最满意,此时效用值为1,故假设效用函数为下式,据此可构建效用决策表(见表4)。
由表4可知,决策者的效用随着定货量与其加权平均和(6,8)的差距的加大而呈递减趋势,当定货量是7时,决策者获得最大的效用,即EU * = 0.72。可见此时的决策者属于风险稳重者,需要说明的是最优方案的选取是与决策者当时所采用的效用函数有紧密联系的。
在上面讨论的两种方法中,都是按期望值的大小进行决策的。然而对于不同的方案,即使期望值相同,它们取值的离散程度仍然是不同的,显然期望值大而离散程度小的方案是最优方案。为了考虑在单位期望值下不同方案的波动性的大小,决策者可以通过计算不同方案的变异系数υ:
σ是标准差,而是期望值。在单位期望值下,变异系数值小表示变量值密集,反之则表示变量值分散。
在上面的例子中,如果选择第二种方法中的效用函数作为决策函数,则相应的变异系数可以计算出来,分别为:0.578,0.347,0.278,0.195,0.282。其结果说明,在单位期望效用值下,方案a4的波动性最小。尽管方案a3的效用值较大,但是如果决策者从波动性的角度考虑,最优方案则应该是a4。
由于在生活当中许多自然现象和生产问题都是难以完全准确预测的,因此决策者在采取相应的决策时总会带有一定的风险。贝叶斯决策法就是将各因素发生某种变动引起结果变动的概率凭统计资料或凭经验主观地假设,然后进一步对期望值进行分析,由于此概率并不能证实其客观性,故往往是主观的和人为的概率,本身带有一定的风险性和不肯定性。
虽然用期望的大小进行判断有一些风险,但仍可以认为贝叶斯决策是一种兼科学性和实效性于一身的比较完善的用于解决风险型决策问题的方法,在实际中能够广泛应用于组织系统改革、企业效益、市场开发、证券投资等诸多领域。使用时根据决策者的侧重点,结合变异系数,综合使用货币因素的贝叶斯决策、或效用函数的贝叶斯决策法,都会得到自己想要的结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18