京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据:谁是演艺圈的“关系户“_数据分析师考试
演艺圈常常登上各大媒体的头条,也是人们茶余饭后的的主要谈资。艺人花边八卦各领一时风骚,有些艺人不惜一切代价炒作人造新闻等等,或为了进入演艺圈,或为了保持领主地位,目的如此等等不一而足。无论是艺人还是观众可能对演艺圈的结构都是盲人摸象,很少有人说的明白。
演艺没有圈?
在很多人眼里(包括演员自己)演艺圈其实不是一个圈,更像是一条区分线,原因是人们很少将艺人之间的关系联系起来,而是简单的根据职业化了一条“演艺界限“,2010-2015年中国电影艺人的合作关系能够非常完整的将演艺圈刻画出来,在这段时间近5000名影视演员进行了10000多人次的合作。演艺圈的合作网络密度不足0.001,可能这个数字很多人无感,但是在现实世界的交际网络关系中能够发现的最大密度为0.5,没落的人人网地社交网络密度平均不足0.03,可见演艺圈的合作网络密度多么低下。因此反映出演艺圈的合作比较松散,当然演艺圈有它固有的性质决定了圈子的密度,这些性质致使大部分演员被隔离在圈子的外层,令人忧伤的是很多演员演了戏,炒了花边,却始终没有走进演艺圈。
构建和进入一个圈子除了要增加自己的粉丝等自身权重以外,还要找到合适的中介人,多数演艺人员更注重前者,二者实则相辅相成。毕竟人以群分,古训镗镗言犹在耳,但很多人忙于花边轰炸,却无论如何也无法向圈内前进一步,最终只点缀了演艺圈的花边。
谁才是“关系户”?
如果我们将合作人次大于等于20设为一个界限,则可以帮助我们清除掉一些“花边”,这样就触及到演艺圈的中心了。那么谁才是演艺圈的核心?恐怕抛出来这个问题很多粉丝又要有一番跨日持久的论战,轻易给出答案的人注定会淹没在口水的海洋中。我们不谈核心、不谈演技、不谈粉丝数量等等,简单就最近五六年的合作关系而言,关系比较多的当属冯绍峰、杨幂、宋佳、黄渤、李晨,也就是演艺圈的“五大关系户”,这五大户不仅关系数量多而且比较优质,因为在我们清理花边时,他们的伙伴并没有从圈内大量消失。而演技派张嘉译原本是演艺圈的关系大户,可是清洗之后,他就被挤出了前五名,他的合作伙伴中,与人合作次数小于20人次的比较多,可能是因为张嘉译更喜欢提携一些演艺新人吧。
范爷的关系位置处于核心的中层,不冷亦不热,与关系大户相比,数量较少。其实进入核心圈以后,关系数量和参演的电影数量正相关。每个演员对待作品可能存在很大的差异,有些人追求质量,有些人追求数量。但同一段时间对于演员可能比普通人更为重要,6年时间对于普通人而言不长不短,可是对于一个演员就意义非凡了,六年前的演艺圈可能就是另一番天地。抓住黄金时间尽可能多地出演质量较好的作品,对于提高演员的声望、地位、演技和收入尤其重要(广告谋生者除外)。
谁是中介人?
要进入某个圈子不是改变一下自己的职业就成功踏入了这个领域,这一点放置于演艺圈应该也是同样的道理。处于边缘的艺人除了要提高自身粉丝数量,加大自身话语权重以外,还要有合适的中介人,如同被心灵鸡汤和成功学唱烂的人脉。演艺圈中介度较高的是杨幂、白百何、宋佳,如果他们出手可能帮助一些人加快进入圈子核心的步伐,当然与他们合作并不一定能够理所当然地得到帮助,但这毕竟是一套展开关系网的方案。

范爷 VS 杨幂
过去的六年应该是杨幂铺展合作关系的六年,高产且合作广泛,而范爷的合作关系网中顶点就比较稀疏,因此范爷在观众心中逐渐形成了高冷的形象,加上成功饰演武皇帝,高贵冷艳范儿更使其形象在观众眼中“雪上加霜”。
就演员自身的业务网络而言,范爷与杨幂比较,多个基本指数较低,比如合作者数据量、网络关系数量和平均关系数量,与杨幂相比较,这些基本指标稍微“孤立“了范爷。但范爷的网络密度和连接度要好于杨幂,原因是网络越小越容易维持较高的密度和连接度,而较大的网络维持较高密度、连接度对网络中每一个人的社交能力要求都很高,所以密度低、连接度低几乎是巨型网络关系的宿命。
给范爷推荐合作伙伴
每一个演员都有一套维持自身网络的方法和技巧,普通人也一样,没有分出高下的必要,适合自己最好。但普通人尚热衷于拓展自身的人脉关系(小编比较冷淡),何况演艺圈。比尔盖茨最近不无戏谑的调侃称人类作为社会动物的本性之一就是社交。范爷在《最强大脑》上的表现更是展现了“亲民“的一面,但是还是被某人冷嘲热讽(范冰冰PK王思聪)。小编突发奇想,真心为范爷推荐几个强势合作伙伴,哎,也是操碎了心。
给范爷推荐合作者要本着几个原则:1)推荐对象6年内非范爷合作者(应该这样);2)推荐对象与范爷的共同合作者较多;3)推荐对象在合作网络中中介度较高;4)推荐对象的合作关系丰富。根据以上原则使用综合算法为范爷推荐了10个未来合作对象。
从结果上看,杨幂无疑是最优的合作对象,前五名中去除缺少共同好友(共同合作者)的推荐对象,也只剩下杨幂、周迅、刘烨。但就小编个人而言,推荐范爷在未来和刘烨、朱雨辰、张嘉译合作。是的,你没有看错,李晨也在榜上,算法的结果和范爷的选择不谋而合。如果你来推荐,推荐谁?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29