京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一、大数据的基本特征
21世纪是数据信息大发展的时代,移动互联、社交网络、电子商务等极大地拓展了互联网的边界和应用范围,各种数据正在迅速膨胀并变大。互联网(社交、搜索、电商)、移动互联网(微博、微信)、物联网、车联网、GPS、医学影像、安全监控、金融(银行、股市、保险)、电信(通话、短信)等行业都在疯狂产生着数据。
数据的单位从小到大依次为Byte、KB、MB、GB、TB、PB、EB、ZB、YB、DB、NB,相邻单位之间相差进率为1024。我们日常生活中接触较多的是前5个,但大数据的单位却几乎是从TB才开始的。在2006年,个人用户刚刚迈进TB时代,全球一共新产生了约180EB的数据,在2011年,这个数字达到了1.8ZB。根据著名市场研究机构IDC的预测,到2020年,整个世界的数据总量将会增长44倍,达到35.2ZB。想驾驭这些庞大的数据,我们必须了解大数据的基本特征。
一是体量大(Volume)。据统计,互联网一天产生的全部内容可以制作1.68亿张DVD,一天发出2940亿封邮件以及200万个帖子。这些数据都表明,互联网时代,社交网络、电子商务与移动通信把人类带入了一个以“PB”为单位的新时代,PB化已经成为比较常态的情况。大数据中的“大”除了大量的意思外,还有全局的概念,所有的数据都聚集在这里。
二是多样化(Variety)。从形式上看,如今的数据类型早已不是单一的文本形式,海量数据有不同的格式,订单、日志、音频对人们的处理能力提出了更高的要求。从结构上看,数据分为结构化、半结构化、非结构化数据,其中非结构化数据正以很高的速率增长,占总数据量的80%~90%,比结构化数据增长快 10到50倍,是传统数据仓库的10到50倍。
三是价值高(Value)。网络每天都会产生大量的不相关信息,这些未经过处理的原始材料属于价值密度低的数据,需要人们沙里淘金。以视频为例,一部1小时的视频,在连续不间断监控过程中,可能有用的数据仅仅只有一两秒。如何通过强大的机器算法更迅速地完成数据的价值“提纯”,是目前大数据汹涌背景下亟待解决的难题。
四是速度快(Velocity)。大数据的产生速度相当快,包括股票、资讯等各方面的信息随时都在传输。由于数据化存在时效性,需要快速处理并得到结果,实时获取需要的信息。比如说一些电商数据,今天的信息不经处理就不能产生有效的结果,这将会影响到今天捕获很多商业决策,因此在海量的数据面前,处理数据的效率就是企业的生命。[1]
二、大数据与传统数据的价值差异
大数据包括交易数据和交互数据集在内的所有数据集,具体由海量交易数据、海量交互数据和海量处理数据三种主要技术汇聚组成。
海量交易数据指企业内部的经营交易信息数据,主要包括联机交易数据和联机分析数据,是结构化的、通过关系数据库进行管理和访问的静态、历史数据。通过这些数据,我们能了解过去发生了什么。
海量交互数据来自Facebook、Twitter、LinkedIn及其他来源的社交媒体数据。它包括呼叫详细记录CDR、设备和传感器信息、GPS和地理定位映射数据、通过管理文件传输Manage File Transfer协议传送的海量图像文件、Web文本和点击流数据、科学信息、电子邮件等。这些数据可以告诉我们未来会发生什么。
海量数据处理是一种应对复杂、海量数据的能力,大数据的涌现已经催生出了设计用于数据密集型处理的架构。例如具有开放源码、在商品硬件群中运行的Apache Hadoop,难题在于以具备成本效益的方式快速可靠地从Hadoop中存取数据。
有人说,大数据是对传统数据的终结和替代。这种观点并不被学者们普遍接受。但大数据的价值和处理方式的确与传统数据有很大程度的不同。
在宗旨上,传统数据处理遵循的是固化业务优于高效,高效优于发现业务。整体上讲这是一种求稳策略。而大数据处理却将传统方法的顺序整体颠倒过来,首先是发现业务,其次是高效,最后是固化业务。
在数据特点上,传统数据面对的一般是企业内部数据,数据量一般不会超过10亿量级。大数据处理的却是多样化的数据,从数据来源上有内部和外部,数据结构上有结构化和非结构化,数据量可处理xPB级。
在技术手段上,传统数据处理方法使用商务智能的开源RDBMS,昂贵的分析挖掘工具,甚至是商用集群。大数据处理方法则更多的是使用开源技术,更注重数据本身,使用多种技术解决业务问题。
在场景上,传统数据主要处理实时、事务性、在线业务,而大数据则会处理大量的批量数据和少量的在线实时型数据。总而言之,传统数据是以业务为中心,大数据则是以数据为中心,数据为业务服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26