京公网安备 11010802034615号
经营许可证编号:京B2-20210330
回望中国,感慨良多。中国制造的发展速度也曾令世界惊叹:一座座城市拔地而起,一家家企业蓬勃而生,辉煌的建设成就使中国一改贫穷落后的旧面貌,成了充满力量的“世界工厂”。于是,一些人认为,中国的工业化就快完成了,很快就要进入发达工业国家的行列了,而一些工业品产能过剩的情况又似乎标志着工业的末路,应该“去工业化”了。然而事实上,和德国、美国相比,中国仍有很大的差距,中国工业创造和积蓄物质财富的使命还远未完成,我们仍然重任在肩。
虽然从顶尖的企业来看,中国制造的名号可以说是响当当的;但是整体上,我们的工业进程是割裂的,东部沿海可以“齐步走”,中西部城市还在学习“站军姿”。发展水平的不平衡导致总体水平的低下,高耗能、劳动密集型、把核心竞争力定位于低劳动成本的加工制造企业仍占据了中国制造的半壁江山,相较于品质精良的德国制造和极具创新活力的美国制造,中国的产品在研发和品牌两端均无比较优势。
同时,为了实现快速的经济效益,许多中国企业向来奉行抄来主义,依葫芦画瓢,将“山寨”发扬光大。如果抄不来,也宁愿买下来,而不是自己去研究开发。在低层次的竞争中,这样的做法确实可以规避研发风险,节约时间,但是,若要在世界范围内树立品牌形象,获得更高、更稳定的收益,企业必须有自己的技术优势、理念以及风格,而这些都需要经过长时间的积累。正因为缺乏技术研发的能力与耐心,中国许多资金雄厚、人才济济的大型企业始终无法进入世界高端产品领域。要知道,产品的核心是技术与品牌——苹果公司(Apple)并没有自己生产手机,却始终是高端手机领域的领导者。
人才,也成了中国制造企业在新时代发展的瓶颈。诸如“21世纪最宝贵的就是人才”“人才就是核心竞争力”这样的口号经常被大家反复强调,然而,对于什么是人才这个问题,人们似乎抱有过于狭隘的理解。中国的高等教育普遍歧视工人,歧视生产一线,几乎没有培养高级工人的意识和想法。但中国制造业的就业人口过亿,他们受教育水平的高低决定着制造业发展的速度与水平——智能机器人、物联网、云计算、工业大数据不断涌入各个工厂,若缺乏相关的知识,不懂操作,如何能实现人机和谐共处?
由此可见,中国制造业的现状令人担忧:大量从事低端加工的中小企业、庞大的就业需求、缺乏创新能力和核心技术、简单工艺的平面管理……种种问题时刻提醒着我们与世界的差距。所幸的是,向世界敞开怀抱的中国,迎来了实现跨越式发展的新机遇。
工业4.0不仅为中国的工业生产提供了一种全新思路,而且与中国国策“两化融合”(工业化与信息化深度融合)战略不谋而合。中德合作在很多方面都有高度互补性,德国的开发力和中国的生产力、德国的技术与中国的市场等都组成了完美的合作基础。在智能化时代,两国的合作会更有利于双方在激烈竞争中抢占先机。新一届中国政府鼎力推荐工业4.0,工业和信息化部快马加鞭制定“中国制造2025”,都是为了使工业4.0能顺利落地中国,并开花结果,一来可以升级“中国智造”,二来能够调整就业的结构性失衡。可见,中国版“工业4.0”——《中国制造2025发展纲要》是我们未来十年的国之大略。
中共中央总书记习近平提出,世界范围内的新一轮科技革命与中国加快转变经济发展方式、建设制造强国形成了历史性交汇。这对中国既是极大的挑战,也是极大的机遇。我们必须实现工业2.0、3.0、4.0的“并联式”发展,充分发挥市场和政府作用,统筹利用各方面资源,以“创新驱动、质量为先、绿色发展、结构优化”为发展方针,动员全社会的力量,从而大大压缩工业化进程的时间,争取让中国制造业在2025年进入世界第二方阵,迈入制造业强国行列。
工业4.0不仅是中国经济结构调整的重大任务,而且是经济增长动力持续的现实出路;它不仅是经济新常态的主要方法,而且是走向经济新常态的战略选择。最后,借用工信部部长苗圩在“2014智能制造国际会议”的一句精彩发言来结尾:“工业4.0将成为全球工业互联网的新典范,中国会全力参与,在新一轮制造革命中实现‘弯道超车’。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01