京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据改良与改革中国保险业_数据分析师考试
大数据可以有效改造与升级传统保险价值链,我们称之为“改良,而最重要的“改良效应”发生在风险评估与定价、交叉销售、防止客户流失、理赔欺诈检测及理赔预防与缓解五大环节。大数据还助力险企突破创新,我们称其为“改革”。
目前,大数据作为“催化剂”在车联网、可穿戴设备、智能家居和平台生态圈构建方面起重要作用。为了更好地驾驭大数据对保险行业的改良及改革,保险公司需要从数据获取、应用和组织三大方面构建包括开拓数据来源、建立许可与信任、构建商业应用场景、数据分析与建模、数据存储与整合、组织建设、专注的数据人才、治理和文化在内的八项专业能力。
为保证整个保险行业数据应用的规范和有效,监管机构首先需在数据保护方面起到监督和引导作用,从引导行业自律和引导消费者两方面入手,推动消费者数据保护,规范商业数据应用行为。保险行业数据依赖性较强,一旦消费者隐私方面出现问题将严重制约行业可持续发展,监管机构应积极引导设立行业自愿达成并遵守行业标准,完善信息披露机制,监督行业自律。
其次,当前信息产业发展愈发迅猛,数据应用愈发复杂,给消费者识别有效信息增添难度。再加上法律体系尚未明确定义数据保护,中国消费者数据保护意识相对薄弱,因此数据获取、传递、应用中存在很多的问题和风险隐患。监管机构应高度重视金融消费者安全教育或培训,在社会上广泛宣传基本金融常识,引导消费者树立数据保护意识,减少安全隐患。
再次,监管机构需推动保险行业基础设施建设,重点在于建立行业级的数据共享平台,更好支撑风险评估、费率技术、征信、信息体系等。共享的行业数据平台能为保险行业发展带来积极作用,有助于整合行业资源、建立更科学的行业定价基准和风险管理数据库等,进而规范保险市场秩序、真正发挥保险的社会功用。
值得关注的是,我国保险业已经成立了行业数据公司,即中国保险信息技术管理有限公司,但其定位尚需探索明确。因此建议借鉴国外行业机构推动的保险数据库公司的运营定位,最终选择适合自己的发展之路。例如,英国的保险协会ABI为非盈利性机构,定位于积极代表行业影响政府政策,具有很强的行业话语权。ABI可代表90%以上保险商,制定行业规则,并提供数据和分析服务。德国的GDV为德国私人保险公司的联盟,为非政府机构,但可”软性“影响政府政策。它主要提供的产品和服务为向德国联邦金融监管局反映行业观点和需求、保护消费者权益、提供净索赔额等统计数据、进行公共关系和教育工作。美国的Verisk Analytics是纯商业性质的保险数据公司,业务主要包括以提供数据为主的风险分析,和应用风险模型为主的决策分析,还向所有行业的风险经理人提供信息服务,在保险业之外,Verisk Analytics通过持续的并购进入了医疗保健、抵押贷款等领域,扩大了其产品种类。
此外,监管机构还需推进立法工作,通过法律保障体系明确责权,建构良好市场环境。目前,美国、欧盟、国际电信联盟均通过数据保护法或隐私权保护等法案,积极寻求立法手段规范数据使用,印度、马来西亚、韩国等也在积极讨论监管议题。我国法律监管依旧存在空白地带,如何搭建基础性法律保护体系、建构长效纠纷解决机制,是监管机构的急需考虑的问题。从发达国家经验看来,严格的数据保护法律可能会对商业应用产生一定副作用,促使消费者不愿共享数据,减缓互联网信息产业发展。在此背景下,监管机构应在立法之时适度留出发展空间,从实践中探索监管创新政策。
监管创新是大数据技术不断发展深入的必然结果。例如,众安保险成立于上海,然而业务范围迅速遍布全国,迅速突破了现有的地域监管框架,甚至我们尚未意识到其他的很多挑战,例如在业务监管、偿付能力等领域。因此,监管机构应正确认识信息化产业创新发展速度,及早迎接大数据时代来临。监管机构可深入调研行业发展现状,开展顶层设计,为行业发展扫除技术或制度障碍。再者,适度宽松的产业政策可激励保险大数据的蓬勃发展,如申报重点项目、设立专项发展资金、支持技术人才培养计划、引导社会上风险投资机构进行投资等。此外,监管机构可不断探索数字化监管、跨界监管等创新监管方式,设立风险预警机制,提高监管效率,促进保险产业健康发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22