京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据改良与改革中国保险业_数据分析师考试
大数据可以有效改造与升级传统保险价值链,我们称之为“改良,而最重要的“改良效应”发生在风险评估与定价、交叉销售、防止客户流失、理赔欺诈检测及理赔预防与缓解五大环节。大数据还助力险企突破创新,我们称其为“改革”。
目前,大数据作为“催化剂”在车联网、可穿戴设备、智能家居和平台生态圈构建方面起重要作用。为了更好地驾驭大数据对保险行业的改良及改革,保险公司需要从数据获取、应用和组织三大方面构建包括开拓数据来源、建立许可与信任、构建商业应用场景、数据分析与建模、数据存储与整合、组织建设、专注的数据人才、治理和文化在内的八项专业能力。
为保证整个保险行业数据应用的规范和有效,监管机构首先需在数据保护方面起到监督和引导作用,从引导行业自律和引导消费者两方面入手,推动消费者数据保护,规范商业数据应用行为。保险行业数据依赖性较强,一旦消费者隐私方面出现问题将严重制约行业可持续发展,监管机构应积极引导设立行业自愿达成并遵守行业标准,完善信息披露机制,监督行业自律。
其次,当前信息产业发展愈发迅猛,数据应用愈发复杂,给消费者识别有效信息增添难度。再加上法律体系尚未明确定义数据保护,中国消费者数据保护意识相对薄弱,因此数据获取、传递、应用中存在很多的问题和风险隐患。监管机构应高度重视金融消费者安全教育或培训,在社会上广泛宣传基本金融常识,引导消费者树立数据保护意识,减少安全隐患。
再次,监管机构需推动保险行业基础设施建设,重点在于建立行业级的数据共享平台,更好支撑风险评估、费率技术、征信、信息体系等。共享的行业数据平台能为保险行业发展带来积极作用,有助于整合行业资源、建立更科学的行业定价基准和风险管理数据库等,进而规范保险市场秩序、真正发挥保险的社会功用。
值得关注的是,我国保险业已经成立了行业数据公司,即中国保险信息技术管理有限公司,但其定位尚需探索明确。因此建议借鉴国外行业机构推动的保险数据库公司的运营定位,最终选择适合自己的发展之路。例如,英国的保险协会ABI为非盈利性机构,定位于积极代表行业影响政府政策,具有很强的行业话语权。ABI可代表90%以上保险商,制定行业规则,并提供数据和分析服务。德国的GDV为德国私人保险公司的联盟,为非政府机构,但可”软性“影响政府政策。它主要提供的产品和服务为向德国联邦金融监管局反映行业观点和需求、保护消费者权益、提供净索赔额等统计数据、进行公共关系和教育工作。美国的Verisk Analytics是纯商业性质的保险数据公司,业务主要包括以提供数据为主的风险分析,和应用风险模型为主的决策分析,还向所有行业的风险经理人提供信息服务,在保险业之外,Verisk Analytics通过持续的并购进入了医疗保健、抵押贷款等领域,扩大了其产品种类。
此外,监管机构还需推进立法工作,通过法律保障体系明确责权,建构良好市场环境。目前,美国、欧盟、国际电信联盟均通过数据保护法或隐私权保护等法案,积极寻求立法手段规范数据使用,印度、马来西亚、韩国等也在积极讨论监管议题。我国法律监管依旧存在空白地带,如何搭建基础性法律保护体系、建构长效纠纷解决机制,是监管机构的急需考虑的问题。从发达国家经验看来,严格的数据保护法律可能会对商业应用产生一定副作用,促使消费者不愿共享数据,减缓互联网信息产业发展。在此背景下,监管机构应在立法之时适度留出发展空间,从实践中探索监管创新政策。
监管创新是大数据技术不断发展深入的必然结果。例如,众安保险成立于上海,然而业务范围迅速遍布全国,迅速突破了现有的地域监管框架,甚至我们尚未意识到其他的很多挑战,例如在业务监管、偿付能力等领域。因此,监管机构应正确认识信息化产业创新发展速度,及早迎接大数据时代来临。监管机构可深入调研行业发展现状,开展顶层设计,为行业发展扫除技术或制度障碍。再者,适度宽松的产业政策可激励保险大数据的蓬勃发展,如申报重点项目、设立专项发展资金、支持技术人才培养计划、引导社会上风险投资机构进行投资等。此外,监管机构可不断探索数字化监管、跨界监管等创新监管方式,设立风险预警机制,提高监管效率,促进保险产业健康发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22