
金融行业的大数据该如何利用_数据分析师培训
移动互联网、大数据、金融三个热点词汇叠加在一起,将会爆发出多么大的想象力。大数据时代不是突然出现的,实际上过去的几十年间,数学家就已经涉猎金融行业了,如诺贝尔经济学奖获得者哈里.马克维茨、威廉.夏普,罗伯特,恩格尔都是数据家。他们通过数学模型对金融市场进行分析,利用计量经济学知识和金融市场数据来建立数学模型,预测金融市场产品收益同风险波动的关系。
数据分析和数据挖掘一直就存在于过去的商业活动中。大数据时代的出现简单的讲是海量数据同完美计算能力结合的结果。确切的说是移动互联网时代产生了海量的数据,大数据技术完美的解决了海量数据的收集、存储、计算的问题,因此大数据时代开启企业利用数据价值的另一个时代。
1、精准营销
大数据可以提供某些企业交易特点和资金需求特点,可以帮助业务部门对企业的资金需求进行分析和筛选,提供现金管理产品,帮助企业解决流动性问题。大数据可以帮助信用卡中心追踪热点信息,针对特定人群提供精准营销产品,增加新卡用户,例如热映电影、娱乐活动、餐饮团购等。
2、社交化营销
人们的社交行为产生了巨大的数据,利用社交平台,结合大数据分析,金融行业可以开展成本较低的社交化营销,借助于开放的互联网平台,依据大量的客户需求数据,进行产品和渠道推广。通过互联网社交平台返回的海量数据,评测营销方案的阶段成果,实时调整营销能够方案,利用口碑传销和病毒式传播来帮助金融行业快速进行产品宣传、品牌宣传、渠道宣传等。
3、提升客户体验
银行可以依据大数据分析,可以对进入网点的客户提供定制服务和问候,在节假日为客户提供定制服务,预知企业客户未来资金需求,提前进行预约,提高客户体验。私人银行可以依据大数据分析报告,帮助客户进行金融市场产品投资,赚取超额利润,形成竞争优势,提高客户体验。保险公司可以依据大数据预测为客户提前提供有效服务,提高客户体验,同时增加商业机会。证券公司可以利用大数分析,快速推出行业报告和市场趋势报告,帮助投资者及时了解热点,提高客户满意度。
4、需求分析和产品创新
大数据提供了整体数据,银行可以利用整体样本数据,从中进行筛选。可以从客户职业,年龄,收入,居住地,习惯爱好,资产,信用等各个方面对客户进行分类,依据其他的数据输入纬度来确定客户的需求来定制产品。银行还可以依据企业的交易数据来预测行业发展特点,为企业客户提供金融产品服务。保险行业可以依据外部数据倒入,根据热点词汇来判断市场对保险产品的需要。证券公司也可以依据外部数据判读投资者喜好,来定制投资产品,进行产品创新。
5、运营效率提升
大数据可以展现不同产品线的实际收入和成本,帮助银行进行产品管理。同时大数据为管理层提供全方面报表,揭示内部运营管理效率,有力于内部效率提升。大数据可以帮助市场部门有效监测营销方案和市场推广情况,提高营销精度,降低营销费用。大数据可以展现风险视图控制信用风险,同时加快信用审批。大数据可以帮助保险行业快速为客户提供保险方案,提高效率,降低成本。证券行业也可以利用大数据动态提供行业报告,快速帮助投资人。
6、决策支持
大数据可以帮助金融企业,为即将实施的决策提供数据支撑,同时也可以依据大数据分析归纳出规律,进一步演绎出新的决策。基于大数据和人工智能技术的决策树模型将会有效帮助金融行业分析信用风险,为业务决策提供有力支持。金融行业新产品或新服务推向市场前,可以在局部地区进行试验,大数据技术可以对采集的数据进行分析,通过统计分析报告为新产品的市场推广提供决策支持。
总之,进入大数据时代,金融行业的客户信息、交易信息、资产信息、信用信息等数据经过有效采集和整理分析,将会成为具有价值的数据信息。内部数据结合外部数据将形成具有重要价值的数据资产,可以有效帮助金融企业进行精准营销,降低运营费用,提高欺诈管理水平,提高信用风险管理水评,为决策提供有效支持,同时帮助金融企业了解客户需求,开发出符合客户需要,具有创新精神的新产品。简单的讲大数据将帮助金融行业提高运转效率,降低支出成本,提高风险管理水平,基于客户需求进行产品创新。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08