京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当大数据碰撞征信会产生什么_数据分析师考试
作为当今企业信息化领域最热门的话题,大数据掀起了新一波IT投资和信息化建设的浪潮。无论是在大数据发源的互联网和电子商务领域,还是在金融、零售、制造、物流等线下业务领域,越来越多的中国企业开始思考、探索和尝试应用大数据的技术和手段,来提升营销、运营和生产的效率及效能。
个性化信息成大数据营销法宝
瞄准大数据时代带来的巨大市场机遇和广阔前景,百分点公司定位于第三方大数据技术和应用服务提供商。百分点创始人兼董事长苏萌告诉《经济参考报》记者,“数据在未来是商业里面最核心的价值,我们做的所有的事都是希望让数据能够变现”。
他介绍说,公司初创于2009年,一开始做个性化推荐引擎,为电商客户做商品个性化推荐。目前,百分点是国内第一家也是最大的推荐引擎技术服务公司。
“如果用户在浏览网站时,三次点击找不到感兴趣的内容,那么跳出率就会高达90%,因此,个性化推荐就显得尤为有价值。”苏萌说,所谓个性化信息流推送,通俗地说,就是通过用户在网站的点击实时预测用户当前的场景、偏好和需求,并将个性化的信息实时展现在用户面前,呈现出“千人千面”的不同展示。
举例来说,比如用户在PC端登陆某购物网站浏览某商品,随着用户的每一次点击,展现的内容就会不一样,网页上还会根据用户的兴趣偏好向这个用户推荐他可能喜欢的同类商品。如果用户并没有在PC端挑选好商品,当他在回家的地铁上用手机浏览该网站的手机端,随意输入搜索内容,此时PC端曾经浏览过的商品就会显示出来,用户就可以轻松地找到感兴趣的商品。通过跨屏、跨设备的打通,个性化推荐让用户轻松在PC端和移动端进行无缝浏览和购买商品。
“根据用户的行为轨迹实时预测该用户当前的场景、偏好和需求,并实时将个性化的关联信息展示到用户面前,已成为大数据营销制胜之关键技术手段。”他说。
大数据底层平台助力实体运营
而个性化推荐引擎的应用只是众多大数据应用中的一个例子。进入大数据时代,已经从信息技术走到了数据技术,如果说信息时代主要处理的是企业内部的小数据、结构化数据,那么数据技术时代,面临的则是海量的外部非结构化数据,包括用户评论数据、行为数据、社交网络数据等等。
苏萌说,就像几十年前,企业开始意识到品牌是资产但是不知道如何去评估,在大数据时代,越来越多的企业意识到数据资产的重要性。但是,怎么把这个资产调整好,把这个资产发挥出价值,怎么把这个资产沉淀到数据平台里面,以及和外部数据进行对接,这些都是要解决的问题。企业需要新的“容器”沉淀数据资产。从用户数据到企业内部数据到企业外部数据,都需要打通整合。
帮助传统企业搭建大数据底层技术平台,也是百分点目前重点发展的一条业务线。这相当于帮助每个企业建立了一个大数据管理系统。通过整合企业内部和外部的数据,对数据进行清洗、加工和建模,为线上零售、线下零售、金融证券、品牌家电制造和品牌汽车等企业的战略、运营、管理、市场、营销等不同部门提供各种数据产品和应用。
举个例子,企业客户服务中心的电话被用户接通之后,客户服务中心工作人员面前的电脑就会显示出打入电话用户的相关消费信息等。再比如,很多企业投放很多广告,但是都没有数据沉淀,这个容器就可以让数据存到数据资产中,可以知道哪儿来的流量转换率更高,从而使得广告投放更加精准。
一个形象的比喻就是,“不需要每个企业都自己去挖井才能喝水,我们挖了一个大井把水提供给大家。”
在数据资产的沉淀管理基础上,包括自动化触发营销等也都可以变为现实。比如说,一个用户在某网站看到一款笔记本电脑,过去的一周内连续三次去浏览,但都没有购买,那么系统就会预测出来这个用户有购买意愿,但是支付意愿可能低于这款笔记本电脑的价格,那么就会触发一个个性化优惠券,使这个用户达到购买价格。
应用市场将呈现三大趋势
纵观大数据市场,在苏萌看来,目前已经从基础设施投入转向了大数据的分析与应用,所有企业的数据与分析都正在转向云端。大数据应用市场将会呈现三个趋势。
第一大趋势是,大数据一定会沿着垂直领域进行深入。“我们不相信会有一种通用的大数据技术、大数据解决方案适应不同的行业。比如电商行业、线下零售行业、汽车行业、家电制造业,这些都是完全不一样的数据结构,企业需求的数据也不一样。”
第二大趋势是,大数据在企业级的软件市场将会有更多突破。目前涌现出很多优秀科技人才和创业者,包括云的智能处理,语音识别的这样一些企业。未来大数据行业也会有很多这样的企业。
第三大趋势是数据融通。大数据的出现,主要是由于出现了移动互联网以及数字化媒体,产生了大量行为的记录,对用户的了解也越来越深刻,这是大数据与以往不同的地方。如果数据不能够在企业之间流转,那么每个企业都将是一个数据孤岛。而大数据首先要解决的就是信息孤岛问题。数据是要流通的,是要交叉运用的。如果数据不能流通,那么真正意义上的大数据时代还没有到来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27