京公网安备 11010802034615号
经营许可证编号:京B2-20210330
运用大数据商业分析和数据科学为企业实现商业价值
商业分析的目标
商业分析的目标是利用大数据为所有职场人员做出迅捷、高质、高效的决策提供可规模化的解决方案-“创造商业价值的数据科学”。那么对于企业成长数据分析的重要性是什么呢?不论是企业做什么事情,一定要有自己最核心的业务平台,而对于企业来讲,最重要的事情是客户及业务的增长,当客户和业务积累到一定程度的时候企业会收集和获得足够的数据,对这些数据进行分析之后会帮助企业找到更多符合客户需求的增值业务及服务,这些业务又可以做到企业最核心的业务平台里面,从而帮助企业获得更多的客户,这样就会形成一个良性的循环,使企业更加健康快速的成长。60+的商业分析团队可以服务5000+的公司人员,它为产品团队、分析团队、运营团队、客服团队、工程团队和营销团队提供有效的数据分析,分析团队对于公司的整个业务来讲是最关键的一环。
分析团队的作用
分析将技术和业务有机的结合起来,其中分析师和数据科学家的任务是既要懂技术又要懂业务,用最好的数据为业务部门创造更多的商业价值,分析团队就像胶水,要能很好的与技术部门和业务部门进行沟通,把公司很好的粘合起来。
商业分析进化论
对于公司的管理人员或者高层来说,理解到商业分析并不是一步到位的过程是非常重要的,商业分析是有一个进化的过程,从数据到洞察。对于所有的分析团队来讲,首先要做的就是数据,把数据做好才能了解到发生了什么,在这一阶段对商业没有太大的回报;第二步是从数据中挖掘一些信息和知识来了解这些事情为什么会发生,这一阶段商业的回报有所增加;第三步是预测将来会发生什么,这一阶段商业回报会进一步提高;最后一步是公司所有的决策都是通过数据分析达成的,这一阶段的商业回报是最高的。
大数据本身的三个基本技术维度:3Vs
第一个V是容量(volume),随着技术的发展,数据的的容量越来越大。第二个V是速度(velocity),当数据容量越来越大的时候会影响数据处理的速度,这时有几种方法是可以利用的,一批批的数据存储、近实时数据存数和真正的实时数据存储。第三个是多样性(variety),从各种各样的渠道获得数据,不同的数据也有不同的数据。我们可以把它分为结构化的数据,这些数据可以用传统的关系性的数据库来存储;对于非结构化的数据,例如文本、图片等不可以用传统的数据库来存储;半结构化的数据,它有结构化数据的特点又能将非结构化的数据存储起来。对于一个公司来讲,把三个维度都做好几乎是不可能的,只有把至三个维度做一个很好的平衡,才能为企业创造价值。
对企业最重要的事情
如果企业是大海,那么分析团队就是海面上的冰山一角,但在大海的下面,分析团队实际上是一座巨大的冰山。分析团队所做出的巨大的贡献业务团队在表面上是看不到的,而且每一个团队都有自己的数据分析软件,对于企业最重要的是业绩,如何将整座冰山做成一块冰棍这是需要每一个团队做出巨大的努力的。
分析团队如何推动商业价值
EOI的分析架构,主要是Empower(助力)、Optimize(优化)、Innovate(创新)。对于分析团队来讲最核心的任务是帮助各个部门拿到他们想要的数据,协助他们运用数据。优化是分析团队的战略性任务,通过对数据的理解和运用帮助业务部门做到更好。创新是分析团队的风险任务,有风险的事情可能会带来很大的收益,也可能什么都得不到。
商业分析实例
1.助力,利用交互性的数据应用给职场人员建立数据通道。人才流动画板这种动态可视化的工具可以帮助挖掘商业洞察,可以帮助你发现公司在人才争夺中的战况。
2.优化,精准营销通过分析和倾向模型精准定位优化营销策略。用户倾向预测模型(B2C),识别正确分块市场,在最好的时间宣传最适合的产品。
3.创新,用商业分析的创新将营销战略带到新的高度。大客户兴趣指数(B2B),商业大客户对相关产品的兴趣度的倾向模型。决策者在B2B的商业模式里起着非常重要的作用,从个人兴趣指数整合到大客户的兴趣指数,较高的大客户兴趣指数带来更高的交易效率和成功率。
冰山下的真正秘密
技术是实现可规模化大数据分析的基石,从最初的网络API到对数据抽取转化加载,整合和集成实现数据的可视化,这一步业务部门才开始利用数据,第四步是数据的分析平台,这个平台实际上是内部的一个网站,让公司各个部门随时能拿到他们所需要的数据,最后的数据变的非常非常小,利用起来会特别简洁。
分析团队的理念
让数据工作从大到小,实现冰山到冰棍;让数据工作从繁到简,后台的代码是非常繁杂的,做出来的产品一定要是非常简单的;让数据工作从慢到快,只要用几秒钟就可以拿到数据提高工作效率。
商业分析发展的趋势
商业需求:数据分析被整合到各个业务领域的决策过程。技术平台:飞速发展的技术带来越来越多样的数据系统。人才需求:对分析师、数据科学家的要求越来越全面。从只做技术的幕后辅助人员到懂业务、数据、科技的策略合伙人。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15