京公网安备 11010802034615号
经营许可证编号:京B2-20210330
运用大数据商业分析和数据科学为企业实现商业价值
商业分析的目标
商业分析的目标是利用大数据为所有职场人员做出迅捷、高质、高效的决策提供可规模化的解决方案-“创造商业价值的数据科学”。那么对于企业成长数据分析的重要性是什么呢?不论是企业做什么事情,一定要有自己最核心的业务平台,而对于企业来讲,最重要的事情是客户及业务的增长,当客户和业务积累到一定程度的时候企业会收集和获得足够的数据,对这些数据进行分析之后会帮助企业找到更多符合客户需求的增值业务及服务,这些业务又可以做到企业最核心的业务平台里面,从而帮助企业获得更多的客户,这样就会形成一个良性的循环,使企业更加健康快速的成长。60+的商业分析团队可以服务5000+的公司人员,它为产品团队、分析团队、运营团队、客服团队、工程团队和营销团队提供有效的数据分析,分析团队对于公司的整个业务来讲是最关键的一环。
分析团队的作用
分析将技术和业务有机的结合起来,其中分析师和数据科学家的任务是既要懂技术又要懂业务,用最好的数据为业务部门创造更多的商业价值,分析团队就像胶水,要能很好的与技术部门和业务部门进行沟通,把公司很好的粘合起来。
商业分析进化论
对于公司的管理人员或者高层来说,理解到商业分析并不是一步到位的过程是非常重要的,商业分析是有一个进化的过程,从数据到洞察。对于所有的分析团队来讲,首先要做的就是数据,把数据做好才能了解到发生了什么,在这一阶段对商业没有太大的回报;第二步是从数据中挖掘一些信息和知识来了解这些事情为什么会发生,这一阶段商业的回报有所增加;第三步是预测将来会发生什么,这一阶段商业回报会进一步提高;最后一步是公司所有的决策都是通过数据分析达成的,这一阶段的商业回报是最高的。
大数据本身的三个基本技术维度:3Vs
第一个V是容量(volume),随着技术的发展,数据的的容量越来越大。第二个V是速度(velocity),当数据容量越来越大的时候会影响数据处理的速度,这时有几种方法是可以利用的,一批批的数据存储、近实时数据存数和真正的实时数据存储。第三个是多样性(variety),从各种各样的渠道获得数据,不同的数据也有不同的数据。我们可以把它分为结构化的数据,这些数据可以用传统的关系性的数据库来存储;对于非结构化的数据,例如文本、图片等不可以用传统的数据库来存储;半结构化的数据,它有结构化数据的特点又能将非结构化的数据存储起来。对于一个公司来讲,把三个维度都做好几乎是不可能的,只有把至三个维度做一个很好的平衡,才能为企业创造价值。
对企业最重要的事情
如果企业是大海,那么分析团队就是海面上的冰山一角,但在大海的下面,分析团队实际上是一座巨大的冰山。分析团队所做出的巨大的贡献业务团队在表面上是看不到的,而且每一个团队都有自己的数据分析软件,对于企业最重要的是业绩,如何将整座冰山做成一块冰棍这是需要每一个团队做出巨大的努力的。
分析团队如何推动商业价值
EOI的分析架构,主要是Empower(助力)、Optimize(优化)、Innovate(创新)。对于分析团队来讲最核心的任务是帮助各个部门拿到他们想要的数据,协助他们运用数据。优化是分析团队的战略性任务,通过对数据的理解和运用帮助业务部门做到更好。创新是分析团队的风险任务,有风险的事情可能会带来很大的收益,也可能什么都得不到。
商业分析实例
1.助力,利用交互性的数据应用给职场人员建立数据通道。人才流动画板这种动态可视化的工具可以帮助挖掘商业洞察,可以帮助你发现公司在人才争夺中的战况。
2.优化,精准营销通过分析和倾向模型精准定位优化营销策略。用户倾向预测模型(B2C),识别正确分块市场,在最好的时间宣传最适合的产品。
3.创新,用商业分析的创新将营销战略带到新的高度。大客户兴趣指数(B2B),商业大客户对相关产品的兴趣度的倾向模型。决策者在B2B的商业模式里起着非常重要的作用,从个人兴趣指数整合到大客户的兴趣指数,较高的大客户兴趣指数带来更高的交易效率和成功率。
冰山下的真正秘密
技术是实现可规模化大数据分析的基石,从最初的网络API到对数据抽取转化加载,整合和集成实现数据的可视化,这一步业务部门才开始利用数据,第四步是数据的分析平台,这个平台实际上是内部的一个网站,让公司各个部门随时能拿到他们所需要的数据,最后的数据变的非常非常小,利用起来会特别简洁。
分析团队的理念
让数据工作从大到小,实现冰山到冰棍;让数据工作从繁到简,后台的代码是非常繁杂的,做出来的产品一定要是非常简单的;让数据工作从慢到快,只要用几秒钟就可以拿到数据提高工作效率。
商业分析发展的趋势
商业需求:数据分析被整合到各个业务领域的决策过程。技术平台:飞速发展的技术带来越来越多样的数据系统。人才需求:对分析师、数据科学家的要求越来越全面。从只做技术的幕后辅助人员到懂业务、数据、科技的策略合伙人。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27